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1. Introduction 
During its three-year mission, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observation (CALIPSO) satellite will acquire a global suite of measurements from which the 
first observationally based estimates of aerosol direct climate forcing will be made.  A key 
component of these measurements will be made by a two-wavelength, polarization sensitive 
backscatter lidar know as CALIOP (i.e., Cloud-Aerosol Lidar with Orthogonal Polarization).  
The global extent of CALIOP’s vertically resolved aerosol and cloud measurements will enable 
new insights into the roles of aerosols and clouds in the Earth’s climate system.  The most basic 
parameters derived from CALIOP are the base and top altitudes of cloud and aerosol layers.  In 
this document we describe the theoretical bases and practical implementations of the algorithms 
used to retrieve these important data products. 

The CALIOP “feature finder” algorithm described in this document detects aerosol and cloud 
layers and determines layer base and top heights.  In addition to locating aerosol and cloud layers 
(referred to generically here as “features”), the feature finder algorithm also computes a set of 
simple descriptive statistics, referred to as “layer descriptors”, from the lidar profile data.  These 
layer boundaries and their associated layer descriptors are the primary inputs to the scene 
classification algorithms described in the CALIPSO Scene Classification ATBD (PC-SCI-202 
Part 3), and provide the requisite roadmap for the retrievals of range-resolved optical properties 
described in the CALIPSO Extinction ATBD (PC-SCI-202 Part 4). 

1.1. Terminology 
As the CALIPSO lidar orbits the Earth, backscatter profiles are acquired which contain signals 
returned from several different classes of geophysical objects.  Of particular interest are those 
portions of the profiles backscattered from clouds, aerosol layers, and/or Earth’s surface.  
However, in its initial scan of the profiles, our detection scheme does not attempt to distinguish 
among these different classes of objects.  Before we attempt to classify a given object as a cloud, 
an aerosol, or a surface spike, we first must determine its spatial boundaries.  That is, before we 
can confidently say what a thing is, we first must know where it is…and we cannot use specifics 
of the “what” to help us in our search for the “where”.1  We have therefore adopted the generic 
term “feature” to refer to all legitimate non-molecular targets that can be detected in a lidar 
profile.  It is only after determining a feature’s boundaries that we can begin to quantify the 
optical properties that will allow us to classify it as either cloud or aerosol.  The classification 
process is discussed in detail in the Scene Classification ATBD (PC-SCI-202 Part 3). 

For the purposes of our detection scheme we define a feature as any extended and contiguous 
region of enhanced backscatter signal that rises significantly above the expected “clear air” 
value.  Clearly this definition encompasses all of our targets of interest: that is, clouds, aerosol 
layers, and surface returns.  Because the CALIOP signal-to-noise ratio (SNR) is often low, noise 
excursions may have magnitudes similar to weak features.  The task of the feature finding 
algorithm is to separate the genuine features from the pseudo-features (i.e., noise excursions) and 
to determine their spatial boundaries. 
                                                 
1 Depending on the terrain and our pointing knowledge, returns from the Earth’s surface can represent 
an exception to this dictum. 
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The fundamental measurement made by a backscatter lidar is a range-resolved profile of laser 
backscatter intensity.  The term “profile” is also somewhat generic: it is used to refer both to the 
data from a single laser pulse and to the data obtained by averaging an arbitrary number of 
consecutive pulses.  However, a profile is always a one-dimensional array of range-resolved lidar 
data. 

As shown in Figure 1.1, multiple features of different types can be present in a single lidar 
profile.  This profile, representing data from a single laser pulse, was acquired during the LITE 
mission (Winker et al., 1996) in a pass over south central Africa.  In it we see clouds of varying 
backscatter intensities centered at 17.3 km, 14.0 km, 12.2 km, and 9.3 km, aerosol layers 
centered at 8.3 and 3.4 km, and a surface return at 1.4 km above mean sea level. 

d

Figure 1.1: Space-based Lidar Profile acquired by LIT
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single atmospheric column.  To augment this ve
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Figure 1.2: Space-based Lidar Scene from over South Central Africa 

1.2. Goals 
Even the most cursory examination of Figure 1.2 shows that clouds and aerosol layers can occur 
in a variety of characteristic spatial scales and display an enormous range of backscatter 
intensities.  For example, the subvisible cirrus layer at 17 km is at times almost indistinguishable 
from the ambient molecular atmosphere (e.g. at MET 01:05:35).  In contrast, the scattering 
intensity of mid-level clouds (e.g., at 7 km and MET 01:05:13) is frequently several orders of 
magnitude stronger than the molecular signal.  Spatially, the fragmented cirrus layer at 14 km 
contains isolated patches spanning no more than a few hundreds of meters vertically and 
horizontally.  The aerosol layer between the surface and ~4 km extends unbroken for hundreds of 
kilometers horizontally.  An effective feature finding algorithm must be able to correctly locate 
the boundaries of features across this entire range of spatial scales and backscatter intensities. 

Also worth noting in Figure 1.2 are the “shadows” that occur beneath optically thick features.  
These shadows occur in regions where the laser’s energy has been substantially attenuated as the 
beam traverses a feature.  As is evident at MET 01:06:15 and again at MET 01:07:00, as these 
shadows become more prominent, even the most robust features below become increasingly 
difficult to detect.  In extreme cases – e.g., at MET 01:05:11 in Figure 1.2 – the beam is totally 
attenuated, so that even the surface of the Earth is no longer visible in the backscatter data.  A 
truly first rate feature finder should be able to detect atmospheric features within the shadows 
beneath those features that are not completely opaque. 

1.3. Background 
Many of the feature finding techniques described in this document were first developed strictly 
for cloud detection as part of the FIRE and ECLIPS projects (Winker and Vaughan, 1994).  

Page 8 of 87 
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Following the flight of LITE in 1994, these algorithms were further developed and enhanced to 
reliably detect both cloud and aerosol layers in multi-wavelength data from space-based lidar 
(Platt et al., 1999).  The feature finding algorithms developed  for CALIPSO continue to build on 
this heritage.  Built into the CALIPSO feature finder is a rudimentary understanding of the 
physics of light propagation through turbid media.  The search routines employ an adaptive 
threshold technique that is combined with an iterated, multi-scale averaging scheme to locate 
feature boundaries across the full range of backscatter intensities. 

Over the years, different researchers have proposed a number of techniques for locating feature 
boundaries within lidar data (Platt et al., 1994).  The majority of the algorithms used within the 
lidar community fall into one of two categories: threshold methods and slope methods (a.k.a. 
zero crossing methods).  Slope methods (e.g., Pal et al., 1992) make use of the range-dependent 
structure of the raw backscatter signal, P(r), from an up-looking lidar.  For the up-looking 
viewing geometry the backscatter signal from a clear atmosphere decreases monotonically with 
range, so that the slope of the clear-air signal with respect to range, ( )dP , is always 
negative.  The presence of clouds and/or strong aerosols in a profile is characterized by an abrupt 
increase in signal level, such that at the near-range boundary of a feature (i.e., the base for an up-
looking system) the sign of 

r dr

( )dP r dr  changes from negative to positive.  The slope method 
identifies the base of a layer using this “zero-crossing” behavior of the first derivative of the raw 
signal.  An example of the slope method applied to up-looking lidar data is shown graphically in 
Figure 1.3. 

In the basic slope method the location of the far-range boundary (i.e., feature top) is less well 
defined.  For opaque features, an apparent top altitude, , is determined to be that point where 
the raw signal drops below the signal level measured just beneath feature base.  For transmissive 
features, the apparent top altitude is located at that point where .  In 
general this approach results in a biased estimate of feature top: the apparent feature top is 
typically lower than the actual cloud top (Wang and Sassen, 2001).  To remedy this deficiency, 
Wang and Sassen have proposed a more sophisticated, iterative approach to feature top 
determination.  This approach includes comparisons to the expected “clear-sky” slope for 
transmissive features and to an empirically determined minimum reliable signal for opaque 
features.   

topr
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Figure 1.3: Slope method calculations for data acquired 4 September 2004 using the LaRC 8" 
up-looking cloud lidar. 
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Slope methods are especially well suited for use with up-looking, ground-based lidar systems.  
These instruments generally have a relatively high signal-to-noise ratio (SNR), which serves to 
minimize the number of false positives reported.  Likewise, multi-layer profiles present no 
particular problem for a well-implemented slope algorithm.  However, because the measured 
data must be differentiated numerically, the most effective implementations of the slope method 
are those for which the lidar generates high SNR data at a high vertical resolution.  This high 
spatial resolution is necessary to permit well-localized estimates of the slope of the signal. 

One practical advantage of slope methods is that they can be applied directly to uncalibrated raw 
data; no additional measurements, models, or assumptions are required.  Threshold methods on 
the other hand require a second piece of information.  As the name implies, threshold methods 
work by examining the signal at each range bin to see if it exceeds some (computed or specified) 
expectation of the maximum signal value that could be measured in “clear air”.  Data points are 
examined sequentially, and feature boundaries are determined by locating those regions for 
which all profile data exceed a threshold value for a distance greater than some predetermined 
minimum.  Over the years several variants of the threshold technique have been proposed.  Some 
early threshold methods (e.g., Melfi et al., 1985) applied an arbitrary, fixed threshold value to the 
range-corrected raw backscatter data.  Winker and Vaughan (1994) examined the attenuated 
scattering ratios (see Section 3.2.1) using a range-dependent array of threshold values derived 
from either rawinsonde soundings or a molecular density model.  Clothiaux et al. (1998) 
construct and continually update an archetypal clear-sky model to use in the threshold scheme 
they apply to micropulse lidar data. 

In general, slope methods are not easily adapted for use with space-based lidars.  This is due in 
part to the assumption of a specific profile geometry.  For space-based lidars, ( )dP r dr  is no 
longer a decreasing function of range.  For systems using longer wavelengths (e.g., 532 nm and 
greater) this is of little consequence, as ( )dP r dr  can be replaced with ( )dP  which in clear 
air is strictly less than zero for either viewing geometry.2 However, to make use of the zero-
crossing behavior the profile of derivatives would have to be scanned beginning at the far end of 
the profile; that is, in the sub-surface region of a space-based profile.  Beginning at R=Rfar means 
that any scan will be required to detect feature base first.  Thus adopting this strategy would 
appear to introduce an additional potential for error, as for down-looking systems bases are more 
difficult to detect than tops precisely because the signal has been attenuated in transit through the 
feature. 

z dz

More relevant for CALIOP, signal quality concerns further argue against the use of a slope 
method.  While high SNR is required for the slope method to function properly, CALIPSO’s 
orbital velocity of ~7 km/sec combined with the need to retrieve feature boundaries at high 
vertical and horizontal resolutions allows only minimal averaging.  Figure 1.4 shows the results 
obtained from a typical set of slope calculations done using a LITE profile obtained by averaging 
over 7.4 km horizontally (10 laser pulses; see Figure 1.4a).  Despite the fact that LITE data has a 
substantially higher SNR than CALIOP, it is still quite obvious (Figure 1.4c) that the level of 

                                                 
2 Note though that for the shorter wavelengths – e.g., the 355 nm channel used in LITE – P(r) is no 
longer monotonic and therefore neither ( )dP  nor r dr ( )dP z dz  is a uniformly decreasing function, a 

condition which violates the fundamental assumption underlying the slope method. 
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random noise in the signal renders the slope information ambiguous at best.  In the clear air 
regions there is no evidence of the uniformly negative values on which the slope method 
depends; instead, the slope oscillates wildly about zero. 

 

Figure 1.4: Slope calculations (dP/dz) computed over 0.25-km (17 data points) using LITE data: 
(a) raw data from LITE orbit 14; (b) slope with respect to altitude of the data shown in (a); and 
(c) a close-up view of the “clear air” slopes shown in (b). 

1.4. Scene Processes vs. Profile Processes 
The vast majority of published feature finding strategies – including slope methods, threshold 
methods, and even new approaches adopting wavelet techniques (Davis et al., 2000) – are what 
might be called profile processes.  In each of these schemes the actual feature-finding techniques 
are a form of one-dimensional line search applied to individual lidar profiles.  Similarly, 
processes that can take advantage of the contextual information provided by a continuous time 
series of profile measurements are called scene processes.  In this sense, the standard example of 
a scene process would be the edge detection techniques used in image processing, which are 
generally implemented as two-dimensional gradient search routines (e.g., Gonzalez & Wintz, 
1977).  While a number of sophisticated edge detection algorithms are available, with respect to 
the spatial analysis of lidar data it is critical to understand that not all edges and/or gradients are 
of equal interest.  This situation is illustrated by the results shown in Figure 1.5.  The upper 
portion of Figure 1.5 shows an extensive dust layer measured during LITE orbit 83.  The lower 
portion shows the corresponding feature “boundaries” determined by the application of edge 
detection techniques derived from the work of Suk and Hong (1984).  As seen most clearly in the 
central portion of the figure, edges are identified not only at the boundaries between features and 
clear air, but also within the interior regions of layers, wherever the signal exhibits an unusually 
steep gradient.  This sort of behavior is part of the reason that studies comparing the two 
approaches (e.g., Galbraith, 1996) generally conclude that image processing techniques should 
be rejected in favor of established threshold methods.  Therefore, in order to take full advantage 
of the contextual information offered by horizontal proximity, the CALIPSO feature-finder 
employs an iterated, multi-scale profile process in the analysis of each scene. 
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e and yellow colors show an extensive layer of Saharan dust; (b) results of the Suk and 
 edge detection algorithm when applied to the data shown in (a).  Implementation of the 
 detection algorithm and the associated images are both courtesy of Steven P. Palm, SSAI 
ASA GSFC. 

etection Theory 
onsidering the cloud detection problem to be one of detecting a target against a noisy 
round (where the noise may be background noise, detector noise, or the statistical noise of 

dar signal) we can estimate the threshold of detectability for a given lidar instrument using 
ard target detection theory (Kingston, 1979).    For aerosols, and especially for weak aerosol 
s, the return signal must be heavily averaged before detection is possible.  So in the case of 
est interest – determining the ultimate detection limits – we are in a regime where Gaussian 
tics are a good approximation.  For the 1064 nm channel, using an avalanche photodiode 
) detector, the detector noise current is large enough that Gaussian statistics are always a 

 approximation.    Strong cloud returns, which are much greater than the background return, 
be identified with minimal or even no averaging.  The photomultiplier (PMT) signal 
tics in this case are not Poisson but Neyman type-A (Teich, 1981), because of the multi-
 multiplication process.  However, in nearly all cases Gaussian statistics are a reasonable 
ximation (Liu, 2002).  Both Poisson and Neyman-A distributions are skewed toward large 
s and Gaussian statistics provide a conservative estimate of detectability.  Therefore, in the 
ing we assume detector noise is Gaussian and that signal levels are high enough that both 

l and background noise are also Gaussian. 

rimary sources of noise of concern are detector dark current and amplifier noise, statistical 
ation of the sunlit background, and the statistical fluctuation of the lidar return signal itself.  
oonless nights, the noise in receiver channels using PMTs is essentially that due to the 

tical fluctuations in the optical signal itself.  During daytime, the noise in the PMT channels 
ermined by the background illumination.  The noise in the 1064 nm channel, which uses an 
, is dominated by dark current at night.  During daytime, both dark current and the solar 
round can be significant.  Standard statistical theory has been used to derive criteria for 
entiating the enhanced signal from aerosol or cloud features from random noise spikes.  
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This is then used to estimate the minimum detectable feature backscatter coefficients at 532 nm 
and 1064 nm as a function of the number of profiles averaged. 

We define the standard deviation of the return signal from a molecular atmosphere, σm, as 

 2 2= + +m f sm bNσ σ σ 2
nσ . (2.1)

where σsm, σb, and σn are the standard deviations of the statistical fluctuations of the lidar return 
signal, the solar background illumination, and the dark current, respectively.  Nf is the detector 
noise factor.  For the return from a feature we have 

 2 2= +c f sm b nN Rσ σ σ 2+σ . (2.2)

where R is the scattering ratio within the feature.  The probability distributions for the signal 
from within the feature, sc (Rayleigh plus cloud), and the molecular signal, sm (Rayleigh only), 
are shown in Figure 2.1.  The molecular signal, sm, can be written as the number of 
photoelectrons detected in a range bin, nm. The magnitude of the RMS noise, σsm, is the square 
root of nm.  Similarly, the other noise terms, σb and σn, can be expressed in terms of the number 
of detected photoelectrons. 

In general, a threshold signal, st, is defined such that if the signal at some range bin exceeds the 
threshold we identify that event as a feature.  Then the probability of detection, Pd, is 

 
2 22

2
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2

∞
−

−
= − ∫ c
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s
d

s s
c

P e σ

π σ
ds  (2.3)

and the false alarm probability, Pfa, (the probability the event is only a noise spike) is  
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m

P e σ

π σ
ds . (2.4)

These relations are shown graphically in Figure 2.1.  The shaded areas to the right of st in Figure 
2.1 represent Pd and Pfa.  By increasing st, the false alarm rate is reduced while also decreasing 
the detection probability.  The integrals in equation (1) and (2) can be easily evaluated using the 
complementary error function, erfc(x) 

 ( ) 22erfc
∞

−= ∫ t

x
x e d

π
t , (2.5)

which allows (1) and (2) to be rewritten as (respectively) 

 
11 erfc
2 2

 −= −  
 

c t
d

c

s sP
σ

 (2.6)

and 

 
1 erfc
2 2

 −=  
 

t m
fa

m

s sP
σ

. (2.7)

From this, we see that it is convenient to parameterize Pd and Pfa in terms of, respectively, 

Page 13 of 87 



–  CALIPSO/CALIOP Feature Finding ATBD  – 

 ( )= −d c tx s s σ c  (2.8)

and  

 ( )= −fa t mx s s σ m . (2.9)

As an example, xd = xfa = 1.28 gives a probability of detection of 90% and a false alarm 
probability of 10%. 

t 

Figure 2.1: Detection probability diagram 
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icient, βmin, is then given by 

)1− . (2.13)

t but varies with the scattering strength of 
 by xd and xfa.  As the feature scattering 
kground increases and the feature can be 
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strength for features located at two altitudes.  The SNR required for detection decreases with 
altitude because the molecular component of the return signal, which acts as a noisy background, 
decreases. 

1E-4 1E-3 0.01
0

5

10

15

 1 km
 10 km

 SNRm

βmin (km-1 sr-1)  
Figure 2.2: SNR required to detect layer with 532 nm backscatter coefficient of β532 (km-1 sr-1) 
at two altitudes, 1 km and 10 km, parameterized in terms of the SNR in clear air outside the 
layer, SNRm.  This example for night conditions with 90% detection probability and 10% false 
alarm rate (xd = xfa = 1.28). 

In the limiting case where background light, detector noise, and dark current are all negligible, 
Rmin can be written in terms of the SNR in the clear air outside the feature, SNRm .  In this case, 
equation (2.12) becomes: 

 

2
2

1
2SNR SNR 2SNR

     = + + +        

d f fa f d f
min

m m

x N x N x N
R

m

 (2.14)

which applies to the PMT channels at night.  

Detection sensitivity for the CALIOP 532 nm channel computed using equation (2.12) is shown 
in Figure 2.3 for day and night as a function of horizontal averaging.  These predictions are for a 
detection probability of 90%, a false alarm rate of 10%, and vertical averaging to a 60 m 
resolution.  If additional averaging is performed in the vertical, requirements for horizontal 
averaging are reduced.  A column albedo of 5% is assumed.  Horizontal red bars indicate typical 
scattering coefficients for different cloud types and for aerosols, based on observations by LITE.  
The two ends of the bar for aerosol represent the 5th and 95th percentiles of the aerosol 
distribution derived from nighttime LITE observations averaged to 7 km horizontal resolution. 
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Figure 2.3: Detection sensitivity of CALIOP 532 nm channel on single shot profiles and profiles 
horizontally averaged to 1 km and 5 km 

Minimum detectable backscatter coefficients decrease with altitude because the magnitude of the 
molecular component of the backscatter signal, which represents a background noise, decreases.  
Virtually all boundary layer clouds will be detectable at the full resolution of the downlinked 
data (30 m x 333 m), which allows precise cloud-clearing of boundary layer aerosol data.  Only 
unusually high aerosol concentrations will be detectable at the highest resolution however.  
Figure 2.3 also indicates that most cirrus can be detected, day or night, at the full resolution of 
the downlinked data (60 meters by 1 km above 8 km altitude).  Even some subvisible tropopause 
cirrus is detectable at 5-km horizontal resolution, but further averaging is required for good 
detection of aerosol. 

Figure 2.4 shows the increase in sensitivity gained by averaging to 20 km or 80 km resolution.  
At 80-km resolution, CALIPSO achieves roughly the same sensitivity as LITE at a 7 km 
resolution.   
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Figure 2.4: Detection sensitivity of CALIOP 532 nm channel on profiles horizontally averaged to 
20 km and 80 km 
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Figure 2.5 compares the sensitivity of the 532 nm and 1064 nm channels.  The APD detector 
used in the 1064 nm channel has much higher dark noise than the PMT detectors used in the 532 
nm channels.  The sensitivity of the 1064 nm channel is limited in most situations by the detector 
dark current, so the sensitivity shows much less variation between day and night and with 
altitude than the 532 nm channel.  The APD detector has much higher quantum efficiency than 
the PMT detectors however, so the 1064 nm channel has better sensitivity than the 532 nm 
channel in the boundary layer, where signals are stronger.  The 532 nm channel is much more 
sensitive than the 1064 nm channel in the upper troposphere and stratosphere, especially at night. 
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Figure 2.5: Comparison of detection sensitivity of 532 nm and 1064 nm channels 

2.2. Enhancements to simple threshold detection 
A practical detection algorithm requires a number of enhancements to simple threshold 
detection.  Some of the more important ones are briefly outlined here, and discussed in more 
detail later. 

(a) In practice, the finder algorithm must have a very low false-alarm rate to be useful.  If the 
discrimination threshold is increased to make the false alarm rate very small, the probability 
of missed detection becomes unreasonably large.  The true statistics of the background are 
quasi-Poisson with a long tail that exacerbates the false alarm problem.  Even if the statistics 
of the background (solar plus noise) are strictly Gaussian, special measures would still have 
to be taken to reduce the false alarm rate.  The vertical resolution of the lidar, 30 m, is less 
than the thickness of most layers found in the atmosphere – typically 200 m or greater for 
thin cirrus and at least several hundred meters for aerosols.  Noise is uncorrelated from bin to 
bin, whereas a feature will fill at least a few bins and produce a return signal that exhibits a 
greater degree of correlation than noise.  Therefore, requiring that a layer have a two or more 
successive samples which exceed the threshold provides significant discrimination against 
noise spikes. 

As an example, consider a case where the signal threshold is set equal to the mean Rayleigh 
signal, st = sm, which gives Pfa = 0.5.  Because we assume the noise fluctuations are 
uncorrelated between samples, the probability of N successive samples exceeding the 
threshold is N

faP , as shown in Table 2.1. 
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Table 2.1: Detection probability as a function of averaging interval 

N (Pfa)N N∆z (meters) 
1 0.50 30 
2 0.25 60 
4 0.0625 120 
6 0.0156 180 

The probability of N successive samples all exceeding st decreases rapidly as N increases, so 
that requiring features to have a minimum number of successive samples above threshold 
greatly reduces the false alarm rate.  

(b) Strongly scattering cloud layers – such as altocumulus – which are thinner than this 
minimum thickness may be encountered.  Because of this, a second discrimination threshold 
is defined for layers thinner than the ‘minimum’ layer thickness.  This second threshold is set 
large enough to rule out false alarms from background noise. 

(c) Because the signal noise varies with the background illumination, the threshold must be 
recomputed on each profile.  

(d) Even in clear air the computed threshold must be altitude dependent.  It must also be adjusted 
for attenuation below layers with significant attenuation. 

3. Physical Models I: the CALIPSO Profile Scanner 
This section will describe the general architecture of the CALIPSO profile-scanning algorithm, 
and will include flow charts depicting all major components.  All necessary assumptions will be 
identified, and an overview of the required inputs and outputs will be provided.  Detailed 
descriptions of inputs and outputs are contained in PC-SCI-202 Part 5 (Lidar Level 2 Data 
Products Appendix). 

Retrieve Input
Data

Find
Features

Report Search
Results

 

Figure 3.1: Simple Profile Scanning Flowchart 

At the most abstract level (see Figure 3.1), the profile-scanning algorithm must accomplish three 
basic tasks: (1) retrieve the necessary input data; (2) search the profile(s) to find all features 
within that data; and (3) export the search results to the overall data processing system.  Section 
3.1 below will list all of the requirements for the “Retrieve Data” task.  The mechanics of finding 
features within lidar profiles will be described in Section 3.2.  Section 3.4 will describe the 
various output data products that will be compiled and made available both to end-users and to 
other algorithms. 

3.1. Required Input Data 
The profile scanner is applied to a range-resolved array of attenuated scattering ratios.  For each 
profile examined these data are calculated as part of the algorithm’s internal data storage.  
Forming the attenuated scattering ratios requires a profile of attenuated total backscatter 
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coefficients (from the Level 1 processing) and access to the same meteorological profile data 
used during the Level 1 processing (see PC-SCI-202, Part 5: Ancillary Data Products).  All 
meteorological parameters are derived from model data obtained from NASA’s Global Modeling 
and Assimilation Office  (GMAO).  The raw data from the GMAO is geolocated and regridded 
as required by the CALIPSO meteorological data server.  Often referred to as the CALIPSO 
“Met Manager”, this server functions as the sole source for all CALIOP-compatible 
meteorological profiles used anywhere within the CALIOP Level 1 and Level 2 data analyses. 

A complete list of all input data required by the profile scanner is given below: 

• an altitude array (z) 

• profiles of attenuated backscatter coefficients for the 532 nm parallel  and 

perpendicular (  channels and the 1064 nm channel  

( )( )532,′ zβ

( )532, ⊥′ zβ )
)

) )

( )( )1064′ zβ

• profiles of “clear air” volume backscatter coefficients ( , volume extinction 

coefficients , and two-way transmittances  at each wavelength  
(from the met manager; note that in this context “clear air” includes contributions from 
molecules and ozone only) 

( )air, zλβ

( )( 2
air, T zλ( )( air, zλσ

• knowledge of the surface altitude (from a digital surface elevation map) and footprint 
position information (latitude & longitude) 

• data acquisition time and a knowledge of the on-board lighting conditions (i.e., day or 
night) to help select the appropriate search constants 

• knowledge of the background signal levels and the RMS variation of the baseline signals 
(computed on-board the satellite, and retrieved from the Payload Health & Status Data 
(PHSD)) 

• base altitude of the 532-nm calibration region (typically 30 km) 

• an approximating function, , that will return the estimated effective cloud 

extinction-to-backscatter ratio, , for temperature T, where T T  
( )*S T

(cS T ) ( )= z

• temperature profiles, T z  (note that if  is constant, the temperature profile 
requirement would vanish) 

( ) ( )*S T

• a set of user-specified coefficients, described below, that controls the behavior of the 
scanning algorithm. 

3.2. Finding Features in Lidar Profiles 
The CALIPSO profile scanner is a threshold algorithm, similar to that used to detect clouds in 
radar data (Uttal et al., 1993) and ground-based lidar data (Winker & Vaughan, 1994).  In 
concept, the threshold method is quite simple.  A threshold level is established (either defined 
arbitrarily or chosen according to some heuristic), and the profile data is scanned beginning in 
some “known to be clear” section of the return.  Data points are examined sequentially, and 
feature boundaries are located by determining those regions where the profile data exceeds the 
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threshold value for all points within some predetermined altitude range (i.e., some minimum 
feature thickness). 

By default, the CALIPSO profile scanner is applied to 532 nm attenuated scattering ratios.  
While there are a number of different representations of the lidar backscatter data to which we 
could apply the profile scanning technique, the 532 nm attenuated scattering ratios offer certain 
structural advantages that allow us to implement a robust search routine. 

3.2.1. Retrieving an Attenuated Scattering Ratio Profile 

We construct the attenuated scattering ratios by dividing the measured total attenuated back-
scatter coefficients at 532 nm by a model of the attenuated backscatter coefficients that would be 
expected in perfectly “clear air”.  To compute the 532 nm total attenuated backscatter coeffi-
cients we simply add the contributions from the parallel and perpendicular components, as in 
equation (3.1). 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
3

2 2 2
⊥′ ′ ′= + = + ⋅ ⋅ ⋅Total p m p m Oz z z z z T z T z T zβ β β β β . (3.1)

The subscripts in equation (3.1) represent scattering and/or attenuation due to particulates (p), 
molecules (m), and ozone (O3).   

Our clear air model is obtained from the CALIPSO Met Manager data, as follows: 

 ( ) ( ) ( ) ( )
3

2 2
air m m O′ = ⋅ ⋅z z T z Tβ β z . (3.2)

All constituents of  are derived from molecular and ozone number density profiles 
obtained from the Met Manager’s meteorological data.  (See the Met Manager ATBD for 
details.) 

( )air′ zβ

Dividing equation (3.1) by equation (3.2) gives us our expression for the attenuated scattering 
ratios. 

 ( ) ( )
( )

( )
( ) ( )2

air

1
 ′

′ = = + ⋅ ′  

pTotal
p

m

zz
R z T

z z
ββ

β β
z . (3.3)

β’total (measured) 

Figure 3.2: LITE Attenuated Bac
β’air (from model)
 

kscatter Coefficients and Attenuated Scattering Ratios 
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The transformation from attenuated backscatter coefficients to attenuated scattering ratios is 
illustrated in Figure 3.2.  We can see from equation (3.3) that in “clear air” – i.e., those regions 
where βp(z) = 0 – the attenuated scattering ratio is equal to the two-way transmittance due solely 
to particulates ( .  Consequently, if we assume noise-free data then within extended 
regions of clear air the slope of the attenuated scattering ratio with respect to altitude is zero.  
Despite the noise inherent in all real-world signals, this behavior is clearly evident in Figure 3.2 
between 2 and 4 km, again between 10 and 12 km, and finally everywhere above 14.5 km.  In 
contrast, the attenuated backscatter coefficients exhibit no such characteristics: signal levels 
change within each clear air region, and their rate of change (i.e., their slope) is different in each 
of the three signal regions specified above. 

( )2
pT z )

A profile of attenuated scattering ratios can thus be seen as a series of “features and flats”.  This 
sort of profile geometry is much more tractable than what is found in the attenuated backscatter 
coefficients, and is therefore much more amenable to the sort of fully automated search routines 
that can be implemented in a computer. 

3.2.2. Threshold Array Basics 

Due to the nature of the noise imposed on the lidar backscatter signal, a single attenuated 
scattering ratio threshold is generally inadequate for dealing with an extended altitude range.  
The CALIPSO threshold array is therefore a function of altitude, with lower threshold values in 
regions of (relatively) high clear air SNR, and higher threshold values in low clear air SNR (e.g., 
high altitude) regions.   

Ideally the threshold array would be specified in terms of the expected variation of the “clear air” 
backscatter signal as a function of altitude.  For a well-behaved signal we can partition the total 
contributions to this variation into two distinct categories.  The first category consists of those 
noise sources whose contributions remain constant with respect to range from the lidar.  Included 
in this segment of the noise budget are such things as detector dark current and the noise due to 
solar background contamination.  In the second category we find those sources for which the 
contributions are range dependent.  For the purposes of constructing a search threshold, the 
range-dependent component is assumed to be restricted to the Poisson- distributed photon arrival 
rates associated with backscatter of laser light from a molecular atmosphere having a range 
dependent number density.  The following procedure assesses the noise contributions from both 
categories and combines them to compute a range-dependent array of backscatter coefficient 
threshold values to be used in scanning a lidar profile.  For application in the profile scanner the 
backscatter coefficient threshold array is divided point-by-point by the clear air model obtained 
from the Met Manager to create an attenuated scattering ratio threshold array. 

Procedure 1: Computing Threshold Values 

A. The range-independent contributions can be approximated very accurately if we can 
determine the RMS deviation of the total signal in some altitude region where the expected 
backscatter contribution approaches zero.  For the CALIPSO lidar this measurement is made 
on-board the satellite by computing the standard deviation of the signal in the upper baseline 
region (~70 to 80 km) for every laser pulse.  This measured backscatter variation (MBV) is 
telemetered back to Earth at full resolution in the Payload Health and Status Data (PHSD). 
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If for some reason an on-board measurement of MBV is not available, a coarser, albeit still 
quite useable, approximation is obtained by computing the standard deviation of the 
measured attenuated backscatter coefficients over the highest CALIPSO altitude region (30.1 
to 40.0 km).  

Note that in either case the MBV is a standard deviation, with units of attenuated backscatter.  
Note too that, due to the nature of Poisson-distributed noise, simply adding a constant offset 
(i.e., MBV) to the clear air backscatter model will not produce an effective threshold array.  
For Poisson-distributed signal, as the signal level rises, so too does the magnitude of the 
corresponding noise envelope.  This effect is demonstrated in Figure 3.3, which shows a 
“clear air” attenuated backscatter profile acquired during the LITE mission (in green) 
together with a clear air model (in blue) and a threshold array (in red) built using Th(z) = 
βair(z) + 3·MBV.3  While the threshold array rises substantially above the noise envelope of 
the signal in the upper altitudes, below ~12 km it falls below the mean noise excursion, and 
substantially below the peak noise excursions. 

 

Figure 3.3: LITE Data with Threshold = βair(z) + 3·MBV 

B. To compute the range-dependent component of the threshold array we start with the 
assumption that the molecular backscatter signal is Poisson distributed.  Recall that for 
Poisson statistics, the signal-to-noise ratio (SNR) varies as the square root of the signal.  
Therefore we can compute the profile SNR relative to the SNR at the maximum sample 
altitude as follows 

 
( )

( )max

′
=

′
air

relative
air

z
SNR

z

β
β

. (3.4)

Note that SNRrelative is a decreasing function of altitude, and has a minimum value of 1.00 at 
the highest sample altitude (zmax). 

                                                 
3 In the examples shown in this document, MBV is computed as the standard deviation of the attenuated 
backscatter coefficients between 30 and 40 km. 

Page 22 of 87 



–  CALIPSO/CALIOP Feature Finding ATBD  – 

Once we have the relative SNR we can compute something that might be called the “relative 
standard deviation” or the relative backscatter variation (RBV).  To do this, recall that 

 ( ) ( ) ( )
( )  so that  ( )

( )
= =

mean z mean z
SNR z StDev z

StDev z SNR z
. 

Similarly 

 
( )

( )( ) =relative
relative

mean z
StDev z

SNR z
 (3.5)

so that 

 
( )

( )( )
′

= air

relative

z
RBV z

SNR z
β

. (3.6)

Substituting (3.4) into (3.6) and simplifying yields 

 ( ) ( )air max( ) ′ ′= ⋅ airRBV z z zβ β . (3.7)

RBV also has units of attenuated backscatter (km-1·sr-1).  As was the case with the MBV 
parameter, RBV alone is not sufficient to produce an effective threshold array.  Figure 3.4 
shows the same attenuated backscatter profile presented in Figure 3.3, only now the threshold 
array (in red) is computed using Th (z) = βair(z) + 3·RBV(z).  The behavior of the threshold 
in this case is essentially the opposite of that in Figure 3.3: the threshold is sufficiently offset 
from the clear air model in the lower altitudes, but falls unacceptably low as the altitude gets 
higher and higher.  

 

Figure 3.4: LITE Data with Threshold = βair(z) + 3·RBV(z) 

C. To combine contributions from MBV and RBV, select constants T0 and T1 and compute a 
threshold array as follows 

 ( ) ( ) ( )0 1′ ′= + ⋅ + ⋅Threshold airz z T MBV T RBVβ β z . (3.8)
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T0 and T1 are programmable parameters fed to the algorithm via external configuration files.  
The initial values used in the CALIPSO mission will be selected based on retrievals using 
simulated data. 

Figure 3.5 shows the results calculated using equation (3.8) with T0=1.5 and T1=2.5.  The 
height of the threshold line is now much more uniform with respect to the extent of the noise 
excursions found at all altitudes throughout the measured data. 

 

Figure 3.5: LITE Data with Threshold = βair(z) + 1.5·MBV + 2.5·RBV(z) 

The relative dominance of MBV or RBV within a given threshold array will depend on the 
lighting conditions.  At night the background signal is very low, and so the width of the noise 
envelope about the mean attenuated backscatter signal will increase noticeably with range.  
Therefore, as we move lower in altitude the nighttime threshold value at any given altitude is 
increasingly influenced by the relative backscatter variation.  During the day however, the 
noise envelope stays relatively constant, because the contributions from solar background 
light (i.e., MBV) overwhelm those inherent in the backscatter signal. 

The adaptive, auto-scaling nature of the threshold scheme is demonstrated in Figure 3.6 using 
three profiles acquired during LITE.  From left to right, the profiles shown are (a) a nighttime 
measurement of a thick aerosol layer, (b) a daytime measurement of “clear air”, and (c) a 
daytime measurement of a bright stratus cloud.  For all three cases, the threshold values 
(which are shown in red) were built using T0=1.5 and T1=2.5.  Note that relative to the noise 
excursions all three thresholds fall in approximately the same place – that is, the noise peaks 
rise above the thresholds (as do the features in A and C), but the bulk of the noise and all of 
the clear air signal is confined below.  Note too that the noise envelopes vary by almost two 
orders of magnitude from the nighttime measurement to the measurement of bright clouds in 
the daytime. 
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CA B

Figure 3.6: Thresholding technique for different lighting conditions; measured attenuated back-
scatter coefficients are shown in green, the model attenuated backscatter coefficients are 
shown in blue, and the threshold lines are shown in red. 

3.2.3. Threshold Array Adaptations for CALIPSO 

Thus far the threshold examples shown have used LITE data.  Applying the threshold scheme to 
CALIPSO data requires some additional considerations.  Unlike LITE, the CALIPSO data have 
been averaged both horizontally and vertically on-board the satellite, and as a consequence the 
threshold values given in equation (3.8) cannot be applied directly to an entire high-resolution 
profile.  Corrections are required for regions having different averaging schemes.  These 
corrections are given below in Table 3.1 for MBV computed using the signal in the region 
between 30-km and 40-km (6th column) and for MBV computed using the single-shot on-board 
measurements made in the baseline region (7th column). 

Table 3.1: Full Resolution Threshold Corrections for Each Averaging Region 

Altitude Region 

Base Top 

Horizontal 
Resolution  

(km) 

Vertical 
Resolution
(meters) 

30 m Points 
Per Resolution 

Element 

Threshold 
Correction 
(30-40 km) 

Threshold 
Correction 
(baseline) 

-2.0 -0.5 1/3 300 10 15  4 5⋅  
-0.5 8.2 1/3 30 1 5 6⋅  2  
8.2 20.2 1 60 6 5 2 3⋅  
20.2 30.1 5/3 180 30 5  4 15⋅  
30.1 40.0 5 300 150 1 20  

  

The necessity for these corrections and the effect of applying them can clearly be seen in Figure 
3.7.  Note in particular how the noise envelope of the full resolution backscatter signal expands 
abruptly at the 20-km on-board averaging boundary.  Note too the corresponding step function 
increase in the threshold array.  Similar threshold discontinuities appear at the 8-km and (less 
noticeably) 30-km on-board averaging boundaries. 
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Figure 3.7: Simulated full resolution CALIPSO profile showing a measurement of clear air 

3.2.4. Attenuated Scattering Ratio Threshold Arrays 

For application in the profile scanner the backscatter coefficient threshold arrays are converted to 
attenuated scattering ratio threshold arrays.  The threshold equation now becomes 

 ( ) ( ) ( )
( )

0 11
⋅ + ⋅′ = +

′Threshold
air

T MBV z T RBV z
R z

zβ
. (3.9)

Due to the corrections required to account for the varying on-board averaging resolutions, MBV 
is now expressed as a function of altitude. 

A side-by-side comparison of the two threshold techniques is shown in Figure 3.8.  Note that in 
both cases the threshold tracks the outline of the signal’s noise envelope. 

 

Figure 3.8: Threshold Arrays for Attenuated Backscatter Coefficients and Attenuated Scattering 
Ratios 

Page 26 of 87 



–  CALIPSO/CALIOP Feature Finding ATBD  – 

3.2.5. Selecting the Profile Scanning Search Constants 

A family of dynamically selected coefficients governs the progress of the profile-scanning 
engine.  These coefficients cannot be considered as constants, because (a) their value may vary 
from profile to profile, and (b) their value may change even within the scan of a single profile.  
Taken together, these coefficients form a set of programmable parameters that are supplied to the 
algorithm via external configuration files.  As with the values for T0 and T1, the initial values for 
the profile scanner search parameters used in the CALIPSO mission will be selected based on 
retrievals using simulated data. 

3.2.5.1. Feature Thickness, Spike Thickness, and Spike Threshold Factor 

The search for features in lidar backscatter data is complicated by the fact that Nature creates 
clouds and aerosol layers in an infinite array of sizes and shapes.  Figure 3.9 shows a profile 
from LITE Orbit 35 that simultaneously depicts two extreme cases.  The very thin “spike” just 
above 9 km is an strongly scattering alto-cumulus cloud.  The broad, flat feature extending from 
5.6 km down to the surface is a dust layer originating in the Western Sahara desert.  We can 
parameterize the shape of features using an aspect ratio statistic:  

 
Peak Attenuated Backscatter CoefficientAspect Ratio

Feature Geometric Thickness
= . (3.10)

The aspect ratio of the dust layer in Figure 3.9 is ~0.0005.  The aspect ratio of the alto-cumulus 
cloud is somewhere in excess of 0.032.  (Because the LITE high-gain data saturates in strong 
features, we cannot measure the full magnitude of the backscatter peak.)  A robust feature-finder 
must be able to reliably detect the boundaries of features at both extremes of the aspect ratio 
scale.  To accomplish this we employ a trio of coefficients known as the minimum feature 
thickness, the minimum spike thickness, and the spike threshold factor. 

 

Alto-cumulus “spike” 
(high aspect ratio) 

Dust layer 
(low aspect ratio)

Surface “spike” 

Figure 3.9: The Extremes of Feature Aspect Ratio 

The minimum feature thickness is a measure of vertical distance, having units of length (kilo-
meters).  It is used in concert with the threshold array to identify most ordinary features.  This is 
perhaps the most straightforward application of the general threshold technique.  To qualify as a 
feature, the scattering ratios in a candidate region must exceed the threshold value for all data 
points within a vertical extent greater than or equal to the specified minimum feature thickness. 
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For the LITE data, a constant value of 150 to 200 meters was generally effective in correctly 
locating small features while simultaneously rejecting extended noise excursions.  However, (a) 
feature finding for LITE was restricted to the troposphere, (b) the LITE data has a uniform 
vertical resolution of 15 meters, and (c) the LITE SNR was substantially higher than the SNR we 
can expect from CALIPSO.  Because the CALIPSO data comes to us “pre-averaged”, the 
CALIPSO profile scanner specifies a minimum feature thickness for each of the five on-board 
averaging regions.  To select the optimum values we must take into account both the expected 
geometric depths of features within each region and the amount of vertical averaging done prior 
to the search. 

Note that the most effective minimum feature thickness can be quite different for different 
threshold values.  If the minimum feature thickness is made larger, the magnitude of the 
threshold constants T0 and T1 can frequently be reduced.  Likewise, if the minimum feature 
thickness is made smaller, larger values of T0 and T1 are usually needed to filter out spurious 
features. 

The high aspect ratio features referred to as “spikes” represent the one general class of features 
that are not detected using the minimum feature thickness parameter.  As shown in Figure 3.9, a 
spike is a thin, dense cloud, one for which the measured vertical extent is less than the minimum 
cloud thickness, but which also contains at least one very large attenuated scattering ratio.  To 
identify these features requires two additional parameters: a minimum spike thickness and a 
spike threshold factor.  Like the minimum feature thickness, the minimum spike thickness is a 
vertical distance with units of length, such that 0 < ∆Zspike < ∆Zfeature.  The spike threshold factor 
is a unitless floating-point number, always greater than one, that amplifies the threshold array 
within the boundaries of the prospective spike.  For a region to qualify as a feature by virtue of 
being a spike, 

• the attenuated scattering ratios within that region must all rise above the local threshold 
level for a vertical distance equal to the minimum spike thickness; AND 

• at least one of the attenuated scattering ratios therein must also exceed the product of the 
threshold value and the spike threshold factor.  Useful values for the spike threshold 
factor are generally in the region of 8 ± 2. 

The spike identification process is illustrated in Figure 3.10 using the data shown earlier in 
Figure 3.9.  The standard feature finder threshold is shown in bright red; the spike threshold, 
which is the product of the spike threshold factor and the standard threshold, is shown in dark 
red.  In this example the minimum feature thickness is set to 180 meters, the minimum spike 
thickness is set to 90 meters, and the spike threshold factor is set to 5.  The 9-km signal 
excursion does not have a vertical extent of 180 meters or more, and hence would initially be 
rejected by the scanner algorithm.  However, it does exceed the standard threshold for the 
requisite minimum of 90 meters and at least one of the attenuated scattering ratios within that 
range exceeds the spike threshold, and thus it is correctly identified as a feature. 
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Figure 3.10: Detection of “spikes” in the attenuated scattering ratio regime; attenuated 
scattering ratios are shown in green, the standard feature finder threshold is shown in bright 
red, and the spike threshold is shown in dark red. 

3.2.5.2. Minimum Clear Air Distance 

To establish a final feature base altitude, the profile scanner requires the specification of a 
minimum clear air distance.  This parameter specifies the minimum “feature-free” vertical 
distance that must exist beneath each potential feature before a fixed base altitude can be 
assigned.  In theory feature base is determined at that point where (a) the mean attenuated 
scattering ratio is less than or equal to the mean attenuated scattering ratio above the feature, and 
(b) the slope of the attenuated scattering ratios is zero.  The measurements of mean and slope are 
both made over the specified minimum clear air distance.  Practical methods for determining 
feature base altitude are discussed in detail beginning in section 3.2.7. 

3.2.5.3. Closing Gaps Between Features 

When analyzing inhomogeneous features with highly variable backscatter coefficients (e.g., 
cirrus clouds), a “plain vanilla” threshold method will frequently find numerous separate, 
narrow, closely spaced peaks in a region where the human eye (guided by intuition and a global 
view of the data) discerns only a single cloud layer.  Therefore, the ability to “close gaps” 
between similar features has been incorporated into the CALIPSO feature finder; that is, two 
features that are considered to be too close together are merged, so that the resulting single 
feature has the base altitude of the lower feature, and the top altitude of the upper feature.  

At a minimum, the algorithm for closing gaps requires specification of some maximum distance 
over which gaps are to be closed.  Note too that to have any effect, this distance must exceed the 
minimum clear air distance.  More sophisticated gap closing algorithms also employ a feature 
similarity score.  This value is computed from the spatial and optical properties of the two 
features under consideration, and is used to prevent the merging of dissimilar features (e.g., a 

Page 29 of 87 



–  CALIPSO/CALIOP Feature Finding ATBD  – 

cirrus cloud and an elevated aerosol layer).4  At present, the CALIPSO gap-closing algorithm 
does not incorporate similarity scores, and instead requires only the specification of a maximum 
gap-closing distance.  Should the distance between the base altitude of the upper feature and the 
top altitude of the lower feature be less than the specified gap-closing distance, the two features 
are merge, and thereafter treated as a single feature. 

3.2.5.4. Search Start and Stop Altitudes 

By default the CALIPSO profile scanner searches an altitude range from a maximum of 30-km5 
down to a minimum of –1.5 km.  However, the search start and stop altitudes are programmable 
parameters.  As will become clear later, a profile scan can be initiated over any subsection of an 
attenuated scattering ratio profile. 

3.2.6. Searching for Feature Top 

Once we have specified a search start altitude, obtained a profile of attenuated scattering ratios, 
and computed an array of threshold values (see Sections 3.2.2 through 3.2.4), the first task of the 
profile scanner is to search for the boundary between “clear air” and the top of the next feature 
(if any).  The search is conducted by scanning down through the profile, beginning at some 
altitude max=Z Z  and ending at min=Z Z .  A feature top is located at the first point such that 
either  

(a) the attenuated scattering ratio exceeds the threshold value for the number of consecutive 
points required to span the minimum feature distance, or  

(b) the attenuated scattering ratio exceeds the threshold value for the number of consecutive 
points required to span the minimum spike distance AND at for at least one of those 
points the attenuated scattering ratio exceeds the threshold value by a multiplicative 
factor greater than the spike threshold factor. 

By definition, the attenuated scattering ratio at the highest cloud top will be greater than 1.00. 

The flowchart in Figure 3.11 gives a pictorial representation of the steps necessary to locate the 
initial feature boundary. 

                                                 
4 An appropriate similarity score might be the inverse of the Euclidean distance between features in some 
(TBD) feature vector subspace, so that similar features (i.e., those that are “nearby” in the selected 
subspace) would have a high similarity score.  This is a topic for future research. 
5 In practice the profile scan is initiated no higher than the base of the 532 parallel channel calibration 
region. 
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Zn = Zmax

Zn > Zmin R'n > ThnYES

set k = n
while R'k > Thk do
    k = k + 1
set k = k - 1
set ∆k = k - n

YES

∆n = 1

Zk < Zn - Zcloud ∆n = ∆kYES

Zk < Zn - Zspike

NO

AR > ARspike

YES

YES

∆n = ∆k + 1NO NO

n = n + ∆n

No Top Found Top at Zn
Preliminary base at Zk

 

∆Zcloud = minimum cloud thickness
∆Zspike = minimum spike thickness
Thn = threshold value at altitude Zn
ARspike = spike aspect ratio

Figure 3.11: Locating Feature Top6 

3.2.7. Estimating Feature Base 

The initial estimate of cloud base occurs at that point where the value of the attenuated scattering 
ratio first drops below the threshold.  However, because the signal is always contaminated with 
some amount of random noise, this first point may not correspond to the true base.  The 
measured value at any range bin can be either higher (positive noise) or lower (negative noise) 
than the expected (i.e., “true”) value.  Negative noise excursions can result in in-cloud data 
values that fail to exceed the threshold value, thereby leading to a premature determination of 

                                                 
6 In this example, the altitude array is structured so that the maximum altitude is at Z[0], and the 
minimum altitude is at Z[N] 
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base altitude.  To combat this sort of error, we use a “probabilistic base locator”.  This algorithm 
chooses the first point below the threshold as an initial estimate of cloud base.  It then “looks 
ahead” by examining an altitude range extending below the current estimate of cloud base for a 
depth equal to the minimum clear air distance (see section 3.2.5.2).  The estimate of cloud base 
altitude is continually advanced (i.e., moved lower in altitude), so long as some pre-selected 
percentage of the points within the examination range remains above the threshold value.  A 
semi-final estimate of cloud base is made at that altitude where the number of points above the 
threshold is less than the required percentage.  In practice, effective values of this “look-ahead 
percentage” range between 50% and 70%. 

3.2.8. Refining Estimates of Base & Top 

A second and more complicated factor in base altitude determination is attenuation of the signal 
by the cloud.  This is perhaps best explained by example.  Suppose we have established a 
constant threshold value of 1.5 – that is, contiguous attenuated scattering ratios of 1.5 or greater 
are indicative of a cloud.  Suppose now that we are asked to evaluate a data point within a cirrus 
cloud having a true scattering ratio, 1+ c mβ β , of 2.5.  If the optical depth of the cloud to this 
point is 0.5, then the attenuated scattering ratio will be .  Clearly this 
fails our threshold test (i.e., 0.92 < 1.50).  But, just as clearly, if we could compensate properly 
for the attenuation incurred within the cloud (or if this same ratio were encountered at the top of 
the cloud), this point would pass the threshold test. 

( )2.5 exp 2 0.92′ = ⋅ − ⋅ =R τ

To overcome the effects of in-cloud attenuation, we once again employ a “look ahead” strategy.  
Near the base of a cloud, the magnitude of the attenuated scattering ratios should fall off for 
some distance; that is, the slope of the attenuated scattering ratios with respect to range should be 
negative.  At cloud base the magnitude should stabilize to some constant value and the slope 
should go to zero.  We can refine our estimate of cloud base by examining the slope in the look-
ahead region.  As long as the slope remains negative, we revise our estimate of the base height to 
a new, lower altitude, and then repeat the process.  When the slope goes to zero, we have located 
cloud base.  This situation is illustrated by the attenuated scattering ratio profile shown in Figure 
3.12. 

 

Initial base estimate
at 13.6 km 

Final base estimate
at 12.4 km

Figure 3.12: LITE Data from Orbit 24 (18.00° N, 107.86° E) 
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The complications addressed in Sections 3.2.7 and 3.2.8 operate entirely independently of one 
another, and so any “base locator” algorithm must be prepared to deal with both simultaneously. 

3.2.9. Updating the Threshold Array 

In constructing our initial threshold array we account for signal attenuation due to molecular 
scattering and ozone absorption.  However, below each feature this initial threshold array must 
be rescaled to account for any additional attenuation due to the propagation through the feature.  
Failure to do so will result in the profile scanner being unable to identify weaker but still 
prominent features that lie beneath moderately to highly attenuating features.  The graphic on the 
left in Figure 3.13 clearly shows the unacceptable consequences that can arise when the 
threshold array is not properly rescaled.  Note that the aerosol layer between 1.0 km and the 
surface falls entirely beneath the original threshold.  The right-hand panel in Figure 3.13 
demonstrates the results obtained when the initial threshold is properly rescaled to account for 
the attenuation of the overlying cirrus layer. 

 

Figure 3.13: Threshold Update 

The initial threshold array is computed assuming a particulate transmittance of T  at the base 
of the calibration region.7  However, this assumption is rendered invalid immediately upon 
identifying the first feature, as  will now be something less than one.  To repair our threshold 
array for use on subsequent, lower altitude portions of the data, we need an estimate of the 
feature two-way transmittance.  In general this estimate is easily computed directly from the 
attenuated scattering ratio data.  Referring to equation (3.3) it is clear that the mean attenuated 
scattering ratio in the “clear air” region beneath a feature provides a direct measurement of the 
feature two-way transmittance.  Because we have used a “look ahead” region to refine our 
estimate of feature base, we have also established a known-to-be-clear region over which we can 
compute the average ratio.  As a consequence, once the profile scanner has made a final 
determination of feature base the next step is to estimate the feature two-way transmittance.  We 

2 1=p

2
pT

                                                 
7 Properly speaking, any signal attenuation between the lidar and the calibration altitude is absorbed into 

the calibration constant, so that our 30-km calibration constant is actually C  ( )2
30km lidar pC T 30 km= ⋅
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do this by computing the average value, ′R , of the attenuated scattering ratios over the minimum 
clear air region (see section 0) beneath our new feature.  In this region we assume that 

2′ ≈ featureR T .  If 1′ ≥R  or 0′ ≤R , no change is made to the profile scanner’s threshold array.  

However, for 0 < ′R  < 1.0 the threshold array is multiplied by ′R  from feature base downwards 
to the end of the array.  The profile scanning then resumes using this modified threshold array. 

r

Due to the nature of the random noise in our signal and to occasional errant behavior by the 
detectors (e.g., overshoot), this last step can cause some unpleasant problems.  In particular, if 
our estimate of T  is too low the modified threshold values will likewise be too low, which can 
subsequently lead to the false detection of a large number of spurious features.  To guard against 
the possibility of this sort of unwanted behavior we use the feature integrated attenuated 
backscatter to develop a simple consistency check. 

2
p

3.2.9.1. Feature Integrated Attenuated Backscatter 

The feature integrated attenuated backscatter is defined by 

 ( ) ( )2′ = ⋅∫
base

feature p p
top

r T r dγ β . (3.11)

As we will see presently, ′featureγ  is an extraordinarily useful quantity that has application in 
several different aspects of feature finding.  Unfortunately, we cannot retrieve accurate values of 
γ′ until after we’ve completed the extinction retrieval.  However, we can make reasonably good 
estimates of the feature integrated attenuated backscatter using the attenuated scattering ratios 
and the clear air trapezoid technique. 

We can make an initial approximation of ′featureγ  by first correcting the total attenuated back-
scatter coefficients for the molecular and ozone transmittances, then integrating between top and 
base, as in equation (3.12). 

 
( )

( ) ( ) ( ) ( ) ( ) ( )2 2
2 2

3

′
= = ⋅ +

⋅∫ ∫ ∫g
base base base

p p m p
top top topm O

r
dr r T r dr r T r dr

T r T r
β

β β ⋅

p

. (3.12)

Alternately, the same expression can be derived using the product of the attenuated scattering 
ratios and the molecular backscatter coefficients, as in equation (3.13). 

 ( ) ( ) ( ) ( ) ( ) ( )2 2′= ⋅ = ⋅ + ⋅∫ ∫ ∫g
base base base

m p p m
top top top

R r r dr r T r dr r T r drβ β β . (3.13)

In either case, the estimate is too large due to the contributions from the feature-attenuated 
molecular backscatter term.  To reduce the error in the estimate, we can approximate the integral 
on the far right side using the appropriate clear air trapezoid area.  The general concept of the 
clear air trapezoid correction is illustrated in Figure 3.14.  This figure shows a multi-featured 
profile of LITE attenuated scattering ratios acquired during orbit 129.  The measured data is 
shown in green within the features and in pale gray elsewhere.  The clear air trapezoids are 
shown as blue crosshatched regions. 
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Figure 3.14: Clear Air Trapezoids 

For each feature we can compute g as indicated in either equation (3.12) or equation (3.13).  This 
calculation will return the total area under the signal curve between the specified boundaries (i.e., 
feature base and top).  To estimate the fraction of the total area contributed by molecular 
scattering we construct a trapezoid representing our best guess at the area of “non-feature” 
contributions to the signal.  The base of each trapezoid extends along the R′(z) = 0 line.  The legs 
of the trapezoid are located at the feature base and top altitudes and extend up perpendicular 
from the zero line to the signal variable values at the base and top altitudes (e.g., R  and R , 
as in equation (3.14)). 

base top

Within the profile scanner, an operational estimate of γ′feature is constructed as follows: 

 

( ) ( )

( ) ( )

( ) (

1 1
1

1
2

1
2

− −
= +

′= ⋅

= ⋅ − ⋅ +

 ′ = − ⋅ − ⋅ + 
 

∑
R

R R

R R

g

g

k m k k

base

k k k k
k top

feature top base top base

z R z

z z

z z

β

γ )

. 
(3.14)

3.2.9.2. A Constrained Threshold Update Scheme 

The equation relating γ′feature to feature optical depth (τ) and lidar ratio (S, a.k.a. extinction-to-
backscatter ratio) is given by 

 ( )( ) ( )21 11 exp 2 1
2 2

   ′ = ⋅ − − ⋅ = ⋅ −   ⋅ ⋅   
feature T

S S
γ τ . (3.15)

Development of (3.15) is given in two seminal papers dating from the early 1970s (Fernald et al., 
1972 and Platt, 1973).  During a profile scan, we can use equation (3.14) to compute γ′feature as 
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soon as we have located feature base.  Using a reasonable choice for S we estimate a lower 
bound for ′R  using a rearranged version of equation (3.15): 

 2 1 2 ′≈ − ⋅ ⋅feature reasonableT Sγ . (3.16)

Note that generating a reasonable lower bound for ′R  requires that we be able to select an 
appropriate upper bound for Sreasonable. 

When we begin a profile scan we assume that the two-way attenuation of the signal due to 
extinction by particulates is 1.00 ( ).  Within the profile scanning algorithm 

we maintain a current estimate of the particulate transmittance, T , that is updated after exiting 
each cloud layer.  For a complete profile scan, the update scheme is as follows: 

20= ⇒ =Tp pτ 1.00
2
p

Procedure 2: Threshold Update 

A. Initialize T  to 1.00. 2
p

Repeat the following steps until the entire profile has been scanned: 

B. Locate feature base and top altitudes and compute γ′feature  

C. Compute ′R  by averaging the attenuated scattering ratios between Z0=base and 
Z1=base+MinimumClearAirDistance.  

D. If ′R  is greater than  or less than zero leave T  unchanged.  No threshold update 
is required. 

2
pT 2

p

E. If ′R  is greater than zero and less than , select Sreasonable and compute 2
pT R  using 

equation (3.16); i.e., 1 2 ′= − ⋅ ⋅feature reR Sγ asonable  

F. Set  to the LARGER of 2
pT ′R  and R  and multiply the remainder of the threshold 

array by the revised value ofT .  The remainder of the threshold array is that part 
from Z0=CloudBase downward to the end of the search region. 

2
p

The strategy outlined above takes a conservative approach to feature finding.  By restricting the 
maximum attenuation ascribed to any feature, we avoid the identification errors associated with 
an unreasonably low threshold array.  However, weak features lying beneath very strong features 
with unusually large lidar ratios may be missed because the threshold is not allowed to drop 
sufficiently low.  Strategies for retrieving these weaker features are considered in detail later in 
section 3.4. 

3.2.9.3. Strategies for Selecting Sreasonable 

The range of naturally occurring lidar ratios within clouds is relatively small.  Recent research 
reports values of Sc

–1 ≈ 0.041 ± 0.026 for cirrus (i.e., Sc ≈ 24; see Sassen & Comstock, 2001 
and/or Eloranta, Kuehn, & Holz, 2000), and Sc ≈ 18 for water clouds (Pinnick et al., 1983).  For 
either ice clouds or water clouds, an appropriate upper bound for Sreasonable lies in the range 
between 30 sr and 50 sr.  The range of measured lidar ratios for aerosols is much wider (from 
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about 10 to 100; see Anderson et. al. 2000), and the mean Saerosol can be much larger (≈ 66 ± 16; 
see Table 4.10 in Masonis, 2001).  Clearly the upper bound for aerosol lidar ratio should be 
higher than that for clouds – say perhaps 80 sr.  Furthermore, because multiple scattering cannot 
be neglected in the analysis of space-based lidar data, Sreasonable must be considered as an 
effective lidar ratio; that is * =S Sη , where η  is the layer averaged multiple scattering factor 
such that 0 1< ≤η .8  The actual values of Sreasonable are therefore somewhat lower than the 
corresponding cloud or aerosol lidar ratio limits. 

Since the threshold constraint is applied to prevent overestimates of feature attenuation, one 
possible approach is to select Sreasonable based on a coarse estimate of feature type.  For example, 
suppose 0.0015′ >featureγ  and 0.6′ <featureχ , indicative of a robust layer of small particles.  We 
could therefore assume that all such layers are aerosols with 0.85≈η , and then set Sreasonable = 70 
sr.  In all other cases, we would assume the feature is a cloud ( ≈η )

                                                

0.75 , and set Sreasonable to 30 
sr.  (Note that if a feature is an aerosol of weak to moderate concentration, the actual attenuation 
will likely be small, and so should not be greatly different than the constrained attenuation we 
estimate using Sreasonable = 30.) 

More sophisticated approaches are also possible.  Several on-going investigations are examining 
the relationship between lidar ratio and the mid-cloud temperature.  The current best estimate of 
cirrus cloud lidar ratios as a function of temperature, T, is given by  

 ( ) 1.259 6.698 for 70 20= − − − ° < < − °cirrusS T T T . (3.17)

where T is given in degrees centigrade, and includes sign (Platt et al., 2002).  However, 
employing this additional information in the selection of Sreasonable requires not only a successful 
discrimination between clouds and aerosols, but also the ability to accurately assess cloud phase.  
These tasks are well beyond the scope of the feature-finding algorithm, and so until such time as 
a feature classification module can be incorporated, Sreasonable is implemented as a single user-
defined constant obtained from a configuration file at runtime. 

3.2.9.4. Threshold Updates and the Minimum Clear Air Distance 

Proper revision of the threshold level is probably the most challenging problem involved in 
adapting the threshold method for use with attenuated scattering ratios.  Care must be taken to 
avoid computing the new value in regions where the signal is contaminated with aerosol, or 
where the profile is distorted due to (for example) an inadequate detector response time.  In this 
respect, statistical concerns alone suggest that it is always better to use more data points rather 
than less.  However, because we have a fixed altitude resolution, using additional data points can 
mean extending the minimum clear air distance to a perhaps unacceptable length. 

3.2.10. Profile Scanner Flow Chart 

A flowchart of the profile scanning engine discussed in this section is given below in Figure 
3.15. 

 
8 A complete analysis of multiple scattering effects can be found in the CALIPSO Extinction ATBD (PC-
SCI-203 Part 5). 
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Figure 3.15: Profile Scanning Flowchart 

Additional detail will be added to this chart in later sections of this document. 

3.3. Assumptions 
The feature-finder relies on the structure of the attenuated scattering ratio profile to extract base 
and top altitudes of cloud and aerosol layers.  We assume that background and baseline 
subtractions have been done correctly, and that the density model we use is a suitable 
representation of the true molecular density in the measurement area, and that the system 
constant estimate is acceptably close to the true value. 

Our feature-finder algorithms are built on an expectation of how the Earth and its atmosphere 
should appear to our lidar.  That expectation takes the form of “clear air” scattering models built 
from meteorological data obtained from the GMAO via the CALIPSO Met Manager.  Similarly, 
the height of the surface above mean sea level is assumed to be a known input obtained from a 
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high quality digital elevation map (DEM) such as the GTOPO30.  Where these model inputs are 
in error our retrieval schemes can be expected to yield less than perfect results. 

3.4. Internal and External Outputs 
The primary output of the profile scanner is a set of layer descriptors.  Layer descriptors describe 
what might be called the bulk properties of a feature; that is, they provide information about the 
geometric and optical characteristics ascribed to an entire feature.  For example, perhaps the 
most fundamental of all spatial layer descriptors are the feature top and base altitudes.  Likewise, 
optical depth and integrated attenuated backscatter are important optical layer descriptors.  We 
record a comprehensive set of layer descriptors for each feature identified during a profile scan.  
In addition to the integrated properties traditionally used in lidar data analysis, we also compute a 
standard suite of descriptive statistics using several different realizations of the profile data 
within a feature.  These statistics include the minimum and maximum values within the feature, 
the sample mean value and standard deviation computed between feature top and feature base, 
and, to further characterize the shape of the profile data, the centroid and a dimensionless 
“skewness” parameter (Brandt, 1999). 

The following layer descriptors are reported for each feature: 

• base and top altitudes 

• integrated attenuated backscatter (γ′) at 532 nm and 1064 nm (for the 532 channel we 
report the integrated total attenuated backscatter coefficient, as described in equation 
(3.14)) 

• attenuated backscatter statistics (i.e., min, max, mean, standard deviation, centroid, and 
skewness of the attenuated total backscatter coefficients at each wavelength) 

• layer-integrated 532 nm volume depolarization ratio (δlayer) 

• 532 nm volume depolarization statistics 

• layer-integrated attenuated total color ratio (χ′ layer) for each feature 

• attenuated total color ratio statistics 

• for all transmissive layers (in general, all layers above the bottom one), an estimate of the 
two-way transmittance at 532 nm and its associated uncertainty 

• feature aspect ratio at 532 nm and 1064 nm 

• temperatures at the base, top, and mid-feature altitudes 

Explicit formulas for calculating the layer descriptors listed above are given in section 6.  Note 
too that the specification given here is not a complete list of all layer descriptors provided in the 
Lidar Level 2 data product.  Additional layer descriptors are added by the scene classification 
algorithms (e.g., cloud-aerosol classification) and following the extinction retrievals (e.g., 1064 
nm optical depth). 

Each complete pass of the profile scanner produces an array of layer descriptors – i.e., one set for 
each feature found.  In addition to this array of layer descriptors, the profile scanner outputs 
include all of the information necessary to locate the profile in time and space.  Profile search 
parameters are included as well. 

Page 39 of 87 



–  CALIPSO/CALIOP Feature Finding ATBD  – 

The following information is recorded for each profile: 

• latitude and longitude (start and stop values) 

• time (start and stop times) 

• solar zenith and azimuth angles 

• effective surface height 

• threshold values and other “constants” used in the search routine (among other things, 
these parameters will provide information on the minimum scattering intensity that could 
be detected in any given region) 

• number of features found 

• an array of layer descriptors (one set for each located feature within the profile) 

4. Physical Models II: Averaging to Retrieve Tenuous Features 
The peak backscatter intensities of the features measured by space-borne lidar range over several 
orders of magnitude.  Strongly scattering features such as stratus and fair weather cumulus are 
easily detected using a single laser pulse.  For more tenuous features – e.g., thin cirrus clouds – 
the average of several laser pulses may be required to obtain the signal-to-noise ratio necessary 
to differentiate feature boundaries from the ambient scattering environment.  The unambiguous 
detection of the very weakest features – faint aerosol layers and subvisible cirrus – may require 
averaging over a substantial number of pulses.  To identify all of the features within a given 
scene at the maximum possible spatial resolution we employ a SELECTIVE ITERATED BOUNDARY 
LOCATION (SIBYL) scheme. The SIBYL algorithm makes multiple passes through a specified 
scene, constructing profiles of attenuated scattering ratios at a series of increasingly coarse 
spatial resolutions.  Immediately after construction, each profile is scanned for the presence of 
clouds, aerosol layers, and/or surface returns using an enhanced version of the profile scanner 
described above.  Using an intensity clearing technique, the backscatter data from those regions 
identified as containing a feature are removed from subsequent processing.  As a consequence, 
features found at high spatial resolutions (i.e., with less averaging) will not be included in the 
profiles of attenuated scattering ratios scanned at coarser resolutions (i.e., more averaging). 

The essential step required for SIBYL’s intensity clearing scheme to be effective is the 
application of an attenuation correction immediately following the removal of features.  For all 
transmissive features, the intensity clearing operation estimates the feature two-way 
transmittance and uses this value to renormalize the partial profile of attenuated scattering ratios 
that lies beneath the feature.  This attenuation correction is fundamentally different from the one 
employed by the profile scanner.  In the profile scanner the attenuation correction (i.e., the 
feature two-way transmittance) is measured over a very limited distance and applied to the 
threshold array.  SIBYL’s attenuation correction is determined only after the profile scanner has 
completed its work.  As a consequence, SIBYL can optimize the estimation process and generate 
an attenuation estimate using (potentially) a much larger range of “clear air” data.  This 
improved estimate is then applied directly to the backscatter data that will be used in the next 
iteration of the profile scanner.  This renormalization step occurs for all but the lowest feature in 
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the region being analyzed: the lowest feature is by definition opaque.9   For opaque features 
occurring within the surface-attached aerosol layer (SAL; Wiegner, 2002), SIBYL also includes 
a cloud-clearing loop to separate aerosols from clouds and surface signals at the highest possible 
spatial resolution (see section 4.4). 
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features were identified at the previous, coarser spatial resolution

"Tropospheric data" is
all data below 20.2 km

When K=1 and the SAL has been cleared, restrict
search to regions where clouds were removed

 

Profile Scanner

Remove Clouds

Profile Scanner

Figure 4.1: SIBYL flowchart; three horizontal resolutions are used (i.e., N=3), with an initial 
resolution (K=1) of 5-km, and subsequent resolutions of 20-km and 80-km. 

Figure 4.1 shows the general flow of the SIBYL algorithm for an arbitrary number (N) of 
averaging levels.  Note that the cloud-clearing loop executes once and once only, while the 
intensity-clearing loop occurs N-1 times.  SIBYL currently uses three horizontal averaging 
intervals: a fundamental averaging distance of 5-km, an intermediate distance of 20-km, and a 
maximum horizontal averaging distance of 80-km.  The 5-km interval was chosen to match the 
on-board data averaging scheme – the largest horizontal averaging distance in the data down-
linked from the satellite is 5-km (see PC-SCI-201).  Successive increments were selected based 
on the expected improvement in signal-to-noise ratio.  Increasing our horizontal averaging 
distance by a factor of four each time should yield (on average) a factor of two increase in the 
profile SNR. 

                                                 
9 Recall that a feature is ANY extended signal excursion rising significantly above the expected molecular 
backscatter level.  By this definition, the surface return is clearly a feature…and a very opaque feature 
too! 
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4.1. Required Input Data 
In one sense SIBYL is simply an averaging engine whose sole purpose is to build horizontally 
averaged lidar profiles to feed into the profile scanner.  Consequently, SIBYL’s input 
requirements are a superset of the profile scanner input requirements enumerated in section 3.1.  
The difference is that SIBYL requires the raw materials – e.g., profiles of attenuated backscatter 
coefficients for all three measurement channels – necessary to compile a complete set of profile 
scanner input parameters for any averaging distance up to and including the maximum horizontal 
averaging distance.  SIBYL therefore ingests blocks of data that span an 80-km horizontal 
distance.  SIBYL also requires access to the full range of data products delivered by the 
CALIPSO Met Manager. 

4.2. Intensity Clearing 
The intensity clearing technique is used to locate feature boundaries over a wide range of feature 
backscatter intensities.  The initial step in the intensity clearing process is to identify strong 
features and then remove them from each profile.  Before removal, the two-way transmittance of 
the feature is estimated.  Immediately following removal, all data beneath the feature is corrected 
for the attenuation ascribed to the feature.  Ideally, what remains following this procedure is a 
profile that represents the backscatter that we would have measured had the feature not been 
present.  Adjacent intensity-cleared profiles can then be further averaged to increase the contrast 
between weaker features and the ambient molecular background.  By applying this intensity 
clearing technique the data generated in subsequent averages is weighted equally with respect to 
feature attenuation throughout the entire profile altitude range. 

The rationale for intensity clearing, its intermediate and final effects, and the procedures required 
to accomplish it are easier to explain and understand by using numerous pictures to augment a 
very few words.  The graphs and tables that follow were all generated from the first 20-km 
horizontal segment of the simulated CALIPSO data pictured in Figure 4.2.  In this simple scene 
we have a cirrus cloud overlying a highly absorbing aerosol layer.  Both layers consist of a 
uniform distribution (with respect to altitude) of backscatter coefficients and a range-invariant 
lidar ratio.  A summary of the “truth” parameters for the simulated features is shown in Table 
4.1. 
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Figure 4.2: A Simple CALIPSO Simulation (raw backscatter signal) 

Table 4.1: Simulation Truth Parameters 

Parameter Aerosol Cloud 
Base 0.0 km 10.0 km 
Top 2.5 km 12.0 km 
532 nm optical depth 0.20 0.50 
532 nm backscatter coefficient 0.0013 km -1 sr -1  0.008 km -1 sr -1 
532 nm lidar ratio 60.9 sr 25.0 sr 

 

Figure 4.3 shows the first four attenuated scattering ratio profiles that will be used in the initial 
profile scans made by SIBYL.  Each profile represents a 5-km horizontal average from the 
simulated data shown in Figure 4.2.  Note that in profile view the cloud remains quite prominent, 
while the aerosol layer is essentially invisible.  A close look at the bottom of each profile plot 
will also reveal the surface spike.  Sensing the surface spike operationally confirms that the cloud 
layer is transmissive, and indicates to the profile scanner that after finding the feature boundaries 
it should also make an estimate of the two-way transmittance. 

 

Figure 4.3: 5-km Attenuated Scattering Ratio Profiles 
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For the data shown in Figure 4.3 our SIBYL prototype returns the following cloud boundaries 
and optical depth estimates: 

Table 4.2: Feature Finder Preliminary Results 

Profile Number Base Top Optical Depth 
1 (left most) 9.915 km 12.015 km 0.487 
2 (center left) 9.915 km 12.075 km 0.404 
3 (center right) 9.915 km 12.015 km 0.516 
4 (right most) 9.915 km 12.015 km 0.506 

 

The next step of the process is to “remove” all features found as a result of the initial scan of the 
5-km averaged data.  Conceptually, the removal step amounts to replacing each feature with the 
appropriate values for “clear air”.  For the attenuated scattering ratios within the uppermost 
feature, this procedure is equivalent to replacing all values within the feature with a value of 
1.00.  (In the context of attenuated scattering ratios, 1.00 represents clear air.)  A pictorial 
representation of the procedure is shown in Figure 4.4.  Note in particular that the cloud peaks 
prominent in Figure 4.3 have now vanished, and have been replaced everywhere by “clear air” 
(i.e., R´(z)=1.00).  

 

Figure 4.4: Feature removal at a 5-km horizontal resolution, with no attenuation correction 
applied 

At this point we have accomplished the first part of the intensity-clearing goal: we have 
identified and removed all strong features in each profile.  We now need to address part two, and 
apply an attenuation correction to the data beneath each removed feature so that our modified 
returns will appear as if the removed feature(s) had never been present.  The effects of feature 
attenuation can be seen clearly in Figure 4.4 by looking at the step function structure of the 
attenuated scattering ratios between 5 and 15 km.  Above feature base (10 km), the mean 
attenuated scattering ratio is approximately 1.00, indicative of clear air.  However, below the 
base the mean attenuated scattering ratio is approximately 0.368 (exp(-2·τ) = 0.368 for τ = 0.50).  
This discontinuity is more clearly evident in Figure 4.5, which shows the average of the four 
profiles displayed in Figure 4.4. 
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Figure 4.5: 20 km average, no attenuation correction applied 

Figure 4.5 also shows the profile scanner threshold that would be computed for this particular 
profile using the technique described in section 3.2.4.  Looking at the threshold applied to the 
uncorrected data, it is obvious that (a) the contrast between the aerosol layer and the ambient 
molecular background is such that the feature should be found, and (b) the attenuated scattering 
ratios within the aerosol layer all lie far below our current search threshold. 

Fortunately, applying the necessary attenuation correction is fairly straightforward in concept 
(though in practice it can on occasion prove to be quite tricky to execute).  We simply measure 
the mean attenuated scattering ratio in the clear air region beneath the feature, and use this result 
to “renormalize” all ratios beneath the feature.   

The prototype version of the feature finder computes mean attenuated scattering ratios beneath 
each of the four 5-km profiles to be 0.378, 0.446, 0.356, and 0.353 respectively.  After dividing 
each profile through by the appropriate correction factor, the profiles shown in Figure 4.4 look 
like this: 

 

Figure 4.6: Feature Removal with Attenuation Correction 

Now when we build the 20-km average we get the desired feature finder result, as shown in 
Figure 4.7.  By including the attenuation correction as an integral component the intensity 
clearing applied to the 5-km data we are able to locate the underlying aerosol layer with excellent 
accuracy in the subsequent 20-km average.  
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Figure 4.7: 20 km Average with Attenuation Correction Applied 

SIBYL can be thought of as a nested multi-grid feature finder.  The adaptive profile scanning 
engine presented in section 3 is applied repeatedly to profiles formed by averaging and 
smoothing over increasingly coarse spatial grids.  Consequently, the process described above for 
moving from 5-km averages to 20-km averages is repeated at the next averaging level using the 
identical procedure.  Four intensity-cleared 20-km profiles are averaged to form a single 80-km 
profile, and this more highly averaged, lower resolution profile is scanned for the presence of 
features by the same scanning engine used for all previous feature finding.  The only deviations 
to the general procedure occur at the first and finest averaging resolution and at the last and 
coarsest resolution.  The intensity clearing that follows each profile scan is not applied to the 
single profile produced at the coarsest spatial resolution, as it is not necessary for any subsequent 
processing.  For the first average, an additional cloud-clearing loop is applied.  This loop is 
described in detail in section 4.4. 

4.3. Selection Strategies for “Clear Air” Regions 
Effectively rescaling the profiles from which features have been removed requires an accurate 
estimate of the two-way transmittance for each feature.  An initial estimate of each feature’s two-
way transmittance is made during the profile scanning process, immediately after feature base 
has been definitively located (see section 3.2.9).  This first estimate is used to adjust the 
threshold level for the remainder of the profile scan.  By necessity however (because we do not 
know in advance where the next feature is), this estimate is made over a limited altitude range in 
the region just beneath feature base.  Therefore, when the scan of the entire profile is complete 
and the locations of all features detectable at that averaging resolution are known, we then 
employ a second scanning process to refine our two-way transmittance estimates by locating the 
most likely region of clear air between features.  We illustrate this procedure with the following 
example. 

Figure 4.8 shows the feature-finder results obtained from a scan of a 5-km averaged profile 
selected from the simulated CALIPSO data presented earlier in Figure 4.2.  Because the look-
ahead distance for this scan was set at 0.5-km, the initial estimate of feature two-way trans-
mittance is computed in the region between 9.5 and 10.0 km; i.e., immediately beneath the base 
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of the cirrus layer.  Clearly a more robust estimate can be made by computing the mean 
attenuated scattering ratio over a larger vertical distance.  Nevertheless, it is not prudent to use 
the entire range between the base of one feature and the top of the next lower feature, as weaker 
layers that are not identified in the earlier, higher resolution scans can cause a significant 
underestimate of the two-way transmittance.  To guard against this sort of error, we define a 
‘clear air analysis depth’ whose magnitude is a linear function of the altitude gap between a 
given pair of successive features. We then treat this clear air analysis depth as a sliding window, 
moving it one range bin at a time through the gap between features, and computing a ‘clear air 
score’ for each interval.  The final estimate for feature two-way transmittance is computed over 
the interval associated with the minimum clear air score. 

 

Figure 4.8: Simulated attenuated scattering ratios showing the detection of a cirrus cloud 
between 10-km and 12-km, and a surface return at 0-km. 

To calculate the clear air score, we recognize that, in the absence of noise, the slope of the 
attenuated scattering ratios ( ′dR dZ )  in a purely molecular atmosphere should always be zero.  

In such case, the mean attenuated scattering ratio ( ′ )R  will equal the two-way transmittance of 
the overlying feature, and will always be less than or equal to one.  Therefore, for each interval 
we compute both ′ dZdR  and ′R .  For those intervals where 0  , the value of the 

clear air score is identical to 

1′< ≤R
′dR dZ .  Otherwise, if 0′ ≤R  or 1′ >R , the clear air score is 

marked as being invalid.  Calculating the ‘clear air analysis depth’, Dclear, requires a trio of user-
supplied configuration constants such that 

• Dmax is the maximum allowed value of Dclear ; 

• gapmin is the minimum permissible gap length (i.e., gapmin ≥ look-ahead distance); 

• gapmax is the maximum gap width that to be considered. 

Dclear is then selected according to 
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where D0 represents the look-ahead distance. 

4.4. Boundary Layer Cloud-Clearing 
As described above, the initial profile scan is performed on profiles averaged over 5 km along-
track.  However, clouds with horizontal extents less than 5-km are often found in the boundary 
layer, and may be located anywhere within the surface-attached aerosol layer.  These clouds are 
usually strongly scattering and thus can be detected in single-shot profiles.  To locate clouds 
within the SAL, a special feature detection loop is implemented in SIBYL.  This loop examines 
5-km averaged profiles and attempts to identify “hot spots” embedded within a newly located, as 
yet unclassified feature.  These hot spots are defined as regions where the backscatter is so 
intense that we are confident the feature is either a cloud or the surface, based solely on the 
strength of the signal.  By using the clearing technique described below we are able to separate 
cloud from aerosol at the highest lidar spatial resolution.  This separation of clouds and aerosols 
is necessary to prevent cloud contamination of aerosol extinction retrievals and also aids the 
scene classification algorithm. 

Intensity clearing is applied to features that are assumed to be homogeneous; that is, the 
transmissive features that we identify and remove in the intensity clearing process are assumed to 
be either pure cloud or pure aerosol.  The application for this assumption is necessitated by the 
attenuation correction that is required in order to properly compensate for the energy dissipated 
through those features that are removed.  Making reliable estimates of this attenuation involves a 
certain amount of horizontal averaging, and within the constraints imposed by a fully automated 
data processing scheme, SIBYL averages as little as possible for each transmissive feature 
located.  Consequently, there is little to be gained by attempting to classify transmissive features 
at horizontal spatial resolutions finer than 5-km.  Even in perfectly clear, totally dark conditions, 
CALIPSO cannot make accurate backscatter measurements of the Rayleigh atmosphere at single 
shot or even single kilometer resolution.  (For example, see Figure 3.7.)  It follows therefore that 
we cannot obtain a useable two-way transmittance measurement of an attenuated signal on a 
similar scale.  This is a critical point, because the retrieval of extinction and backscatter 
coefficients from within transmissive features is constrained by the two-way transmittance 
measurement. 

Note however that no attenuation correction is required, or even possible, for opaque features.  
Because the subsequent extinction retrieval is not constrained by an attenuation measurement, 
we can therefore take extra liberties in our horizontal averaging of the data.  This works to our 
advantage in the boundary layer, where the features we detect are frequently heterogeneous and, 
because the aerosol layer is generally attached to the surface, almost always opaque.  Figure 4.9 
demonstrates a compelling example of the turbulent mix of feature types found in the boundary 
layer.  The red and orange colors below 2.5 km indicate dense aerosol concentrations in the SAL.  
The semi-continuous thick white line at 0 km is the surface of the Atlantic Ocean south of Brazil.  
The elevated, intermittent, white “hot spots” embedded in the upper portion of the aerosol layer 
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are cumulus clouds.  Clouds of this type can exist on very small spatial scales.  To ensure the 
homogeneity of features identified as boundary layer aerosols, SIBYL includes a process 
dedicated specifically to identifying and ultimately removing clouds located within all boundary 
layer features. 

 

Figure 4.9: Clouds Embedded in Aerosol from LITE Orbit 22 

4.4.1. Definition of Terms for Boundary Layer Features 

Boundary layer features are (a) connected (i.e., vertically adjacent) to the surface, (b) thick (or at 
least substantially thicker than a pure surface return), and (c) opaque (because the surface is not 
transparent). 

Homogeneous features are those which are either (a) all cloud (hot spot), or (b) all “not cloud”.  
Recall that at this point no cloud vs. aerosol determination has been made for weak features: all 
we know is the location of those features that meet our defined criteria for hot spots (which are 
identified as either clouds or surface returns).  For the purposes of computing an extinction 
profile, the final feature boundaries of a homogeneous feature are identical with the feature 
boundaries located by the 5-km profile scan.  These are the boundaries that will be recorded in 
the low-resolution scene classification data product. 

4.4.2. Rationale 

The high-resolution cloud-clearing process (i.e., the upper loop in Figure 4.1) is a method for 
identifying the locations of any exceptionally strong backscatter within a feature.  Based solely 
on their very high backscatter intensity, these regions are defined a priori as either clouds or 
surface returns.  The motivating assumption underlying this operation is that these hot spots (i.e., 
clouds) will cover only some fraction of any 5-km sample region.  Therefore, once the hot spots 
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are identified and removed, further averaging can be done in order to isolate and retrieve the 
scattering characteristics of the surrounding media (presumably aerosol). 

Figure 4.10 presents an expanded view of a portion of the data shown in Figure 4.9.  In this 
example, the aerosol layer is ubiquitous, while clouds occur in only 30% of the profiles.  
Unambiguous determination of the aerosol spatial boundaries requires that the aerosol-only 
portions of the return be separated from the cloud regions.  This fact is clearly demonstrated in 
the second, seventh, eleventh, and twelfth 5-km segments, where the maximum cloud top 
protrudes above the top of the aerosol layer. 

Figure 4.10: Spatial Scales of Cumulu
boundary; the red lines indicate 20-k
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feature in profile B.  Note that in both instances the feature comfortably exceeds the rather 
conservative threshold line established by the profile-scanning algorithm. 

 

A B 

Figure 4.11: LITE 1064 nm attenuated scattering ratios for two consecutive 5-km segments; 
segment A shows fair weather cumulus embedded in aerosol, while segment B contains a single 
cloud-free aerosol layer 

To separate regions of cloud and aerosol in profile A we now examine the full-resolution profiles 
from the region of data used to make the current 5-km average.  A modified threshold array is 
constructed for each full-resolution profile, and a revised threshold algorithm is applied only to 
those altitude ranges in which a feature was located by the 5-km profile scan.  All data points 
within the 5-km feature that exceed the modified threshold value are identified as “hot spots”. 

One prime target for hot spot removal is fair weather cumulus embedded in boundary layer 
aerosol.  Because the expected particle size is significantly different between these two feature 
types, we can utilize the two-wavelength capability of our lidar to help differentiate one from the 
other.  Instead of rescanning the 532 nm attenuated scattering ratios, the cloud clearing procedure 
is applied instead to the 1064 nm attenuated backscatter coefficients.  Because the 1064 nm 
channel is much less sensitive to the scattering from small aerosol particles, the contrast between 
clouds and aerosols is greater at this wavelength.  Furthermore, for high intensity features in the 
boundary layer the 1064 channel has superior SNR relative to the 532 channel.10  Finally (and 
perhaps paradoxically), high intensity signals measured in the 1064 channel receive an additional 
SNR boost from the on-board averaging scheme.  (Recall that in the lower troposphere the 1064 
channel has been subjected to additional on-board averaging, so that its vertical resolution is 60 
meters vs. 30 meters at 532 nm.) 

Because molecular backscatter is essentially undetectable in single shot 1064-nm profiles, the 
threshold array used in this context is a simplified version of the attenuated backscatter 
coefficient threshold first presented in equation (3.8).  For each full-resolution profile we 
construct a modified threshold array by replacing the weighted range-dependent molecular 

                                                 
10 For low intensity features dark current dominates the 1064 signal.  For high intensity signals the high 
quantum efficiency of the 1064 detector dominates. 
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model term  with a weighted constant term (( )( 1 ⋅T RBV z ) )2 ⋅ MaxAerosolT β .11  The constant in this 
new term represents the largest backscatter coefficient we would expect to measure in an aerosol 
layer.  The actual value(s) used for MaxAerosolβ  will be determined empirically from analyses of the 
available aerosol backscatter data (see Section 4.4.4). 

 ( ) ( ) ( )( )2
1064, 0 1064 2′= ⋅ + ⋅ + ⋅Threshold above air MaxAerosolPBL z T z T MBV z Tβ β . (4.2)

The complete expression for the revised threshold is given above in equation (4.2).  The  
term represents the attenuation of the signal within the boundary layer due to any overlying 
features (e.g., cirrus layers), and is required to properly scale the resulting threshold array.  For 
the purposes of cloud clearing, we can assume that the feature attenuation down to the top of the 
boundary layer is independent of wavelength.  The attenuation due to large particles (clouds) will 
be essentially the same for both wavelengths.  The attenuation from small lofted particles 
(aerosols) will in general be larger at 532 nm, but in this particular application an overestimation 
of the total column attenuation leads only to a slightly more conservative estimate of hot spot 
occurrence.  Therefore, an acceptable attenuation correction can be obtained from the mean 
value of the 532 nm attenuated scattering ratios in the clear region immediately above the 
boundary layer feature. 

2
aboveT

βMaxAerosol and T2 are both user-specified coefficients read into the SIBYL analysis from external 
configuration files.  Note too that the value of βMaxAerosol can be expected to change as a function 
of season and/or geophysical location. 

A succinct description of the cloud-clearing algorithm is provided by the flowchart shown in 
Figure 4.14.  The details of the procedure are illustrated by Figure 4.12, which shows attenuated 
backscatter profiles for each of the seven LITE laser pulses used to construct Profile A in Figure 
4.11.  Upon decomposition, the cloud that is so prominent in Profile A is seen to be present only 
in the fourth and fifth high-resolution profiles.  The black line shown in each plot represents a 
modified threshold array constructed according to equation (4.2).  Hot spots are those data points 
that rise above the threshold lines.  In this example, the surface spike is identified as a hot spot in 
all seven profiles, as is the cumulus cloud in profiles four and five. 

                                                 
11 Like T0 and T1, T2 is a strictly positive weighting constant. 
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At this point, those regions identified as hot spots have been irrevocably removed from the 
remainder of the feature finding process.  (This data is, of course, tagged and stored, and will 
resurface later as necessary in other parts of the analysis process.)  If, as in the example shown 
here, the aerosol layer is sufficiently robust to be identified by the secondary 5-km scan it is 
treated exactly as any other feature found at 5-km. 

Initial 5-km Profile
Scan

Lowest
Feature is
Boundary

Layer

Retrieve N
full-resolution

profiles

Build Threshold K

Scan Feature Region in
Full-Resolution Profile K

Mark Hot Spots in Profile K

K = NK = K+1

YES

NO

YES

Secondary 5-km
Profile Scan

Record Feature
Characteristics

NO

K = 1

Hot Spots
Found?

Reaverage
omitting all
hot spots
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No cloud clearing
necessary if lowest
feature is not the
boundary layer

No rescan necessary
if no hot spots were
found (feature is an

aerosol layer)

Assume N full-resolution
profiles in a 5-km average

Figure 4.14: Boundary Layer Cloud-Clearing Flowchart 

4.4.4. Obtaining a Best Estimate for MaxAerosolβ  

Prior to the start of the CALIPSO mission, βMaxAerosol was selected based on the distribution of 
aerosol backscatter coefficients derived from LITE data during studies conducted as part of the 
Global Aerosol Climatology Project (GACP; Mishchenko et al., 2002), shown in Figure 4.15.  
After launch, updates to this value will be made as required throughout the mission.  These 
updates will be derived from aerosol distributions obtained from analysis of the CALIOP lidar 
data. 
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Figure 4.15: Distribution of aerosol backscatter coefficients retrieved from LITE data using 
S*=25 

4.5. False Positive Interdiction Using an Integrated Backscatter Threshold 
False positives are noise excursions that pass all of the feature acceptance tests levied by the 
profile scanner.  The misidentification of false positives as features can arise from several 
different sources.  As an example, the threshold damping technique describe in section 3.2.9 is 
aimed at eliminating one specific type of false positive that can occur beneath features associated 
with unusually low values of ′R .  However, additional strategies are also employed to further 
reduce the number of these spurious features that otherwise will contaminate the data set.  Once 
again, the feature integrated attenuated backscatter plays a significant role in this activity.  
Because SIBYL makes multiple passes through the data, the algorithm can afford to “miss” faint 
features in the higher-resolution scans.  Assuming these weaker features possess a certain degree 
of horizontal persistence, additional averaging will improve the contrast between the feature and 
the surrounding clear air.  Thus weak features which are barely detectable at one resolution can 
be unambiguously identified at the next averaging step. 

As we move through SIBYL’s sequence of spatial resolutions, from 5-km though 20-km and 
ultimately to 80-km, we are focusing our detection efforts at each stage on progressively weaker 
and more tenuous features.  The best example of this occurs in the first stage, which includes 
both the 5-km profile scan and the single profile hot-spot identification.  Our goal here is to 
identify the boundaries of strong features.  In fact, given our strategy for implementing the 
extinction retrieval (see PC-SCI-202 Part 4), we specifically DO NOT want to identify weak 
features at this highest of spatial resolutions.  Extinction profiles within features are retrieved at 
the same horizontal resolution at which they are detected by SIBYL.  If insufficient averaging is 
done for weak features, the SNR within attenuated backscatter profile will be unacceptably low, 
leading to an extinction retrieval of poor quality.   Therefore, to enable SIBYL to deliver only 
those features with adequate SNR to the extinction algorithms we impose a lower bound on the 
scattering intensity of the features that can be reported back from any profile scan.  This lower 
bound is implemented by enforcing a minimum required value for the feature integrated 
attenuated backscatter.  Feature candidates that fail to meet this predetermined γ′ threshold value 
will be rejected.  By adopting this strategy we simultaneously introduce yet another technique for 
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eliminating false positives.  Given sufficient horizontal persistence, genuine features rejected at a 
higher resolution will be retrieved on a subsequent profile scan at a lower resolution, when 
additional averaging their contrast has improved and the γ′ restrictions are less stringent. 

SIBYL’s initial profile scan provides an excellent example of how this process works.  In the 
troposphere, the weakest clouds we will measure are those that are categorized as subvisible, 
threshold visible, or more generically as thin cirrus.  Such clouds cirrus are common near the 
tropical tropopause (Beyerle et al., 1998).  The threshold level at which a cloud becomes 
subvisible occurs at an optical depth of approximately 0.03.  (Uthe & Russell, 1976; Sassen et 
al., 1989)  Since cirrus cloud lidar ratios are generally in the range of Sc ≈ 25 (e.g., Sassen & 
Comstock, 2001), we can use equation (3.15) to derive a table of integrated attenuated 
backscatter values typical of subvisible cirrus (see Table 4.3).    Using this table, we can select a 
threshold value that will prevent subvisible cirrus from being detected at resolutions of less than 
20 km, which will (a) improve the SNR of the profiles that will eventually be passed on the 
extinction retrieval and (b) reduce the frequency of false positives. 

Table 4.3: Integrated Attenuated Backscatter for Subvisible Cirrus 

 Optical Depth 
Lidar Ratio 0.020 0.025 0.030 

20 9.80 x 10-4 1.22 x 10-3 1.46 x 10-3 
25 7.84 x 10-4 9.75 x 10-4 1.16 x 10-3 
30 6.54 x 10-4 8.13 x 10-4 9.71 x 10-4 

Tests with simulated CALIPSO data derived from LITE nighttime observations indicate that 
using a threshold value of γ′ = 0.0015 at the 5-km averaging resolution effectively eliminates the 
large majority of false positives.  Particularly during daytime, γ′ values such as those shown in 
Table 4.3 are highly unlikely to be associated with genuine features unless substantial horizontal 
averaging has been performed. 

The false positive rejection strategies described in this section have been integrated into the 
profile scanner used within the SIBYL algorithm.  A flowchart diagramming the modified 
scanning routine is shown in Figure 4.16. 
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Figure 4.16: Profile Scanning Flowchart Customized for use by SIBYL 

4.6. SIBYL Procedure and Detailed Flowchart 
In principle, SIBYL can have an arbitrarily large number of averaging levels, as shown in the 
high-level flowchart presented in Figure 4.1.  In practice however, we have limited the number 
of averaging levels to three: 5-km, 20-km, and 80-km.  In this section we outline in detail the 
specific steps that are taken in a single cycle by the SIBYL procedure.  These steps are also 
described pictorially in Figure 4.17. 
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Procedure 3: SIBYL: A Nested Multi-Grid Feature Finder 

A. Select N consecutive profile packages.  Each profile package consists of all full 
resolution profile data spanning a horizontal distance equal to the fundamental (i.e., 
the first and smallest) averaging distance.  For CALIPSO the fundamental averaging 
distance is 5 kilometers.  The number N is determined by dividing the maximum 
averaging distance, which for CALIPSO is 80 kilometers, by the fundamental 
averaging distance.  For CALIPSO, N=16. 

B. For n = 1…N do 

B.1. Average over profile package n (horizontal averaging only) to produce a 
single profile having a uniform 5-km horizontal resolution 

B.2. Use the profile scanner to locate features within the nth 5-km averaged profile 
(section 3) 

B.3. If the profile scan locates any features, generate a set of five 1-km horizontal 
averages for all tropospheric data (20.2-km and lower) within the initial 5-km 
horizontal segment; search only the altitude regions identified as features in 
the 5-km scan to identify those features visible at 1-km resolution; calculate 
layer descriptors for each 1-km feature found 

B.4. If the profile scan locates a boundary layer feature… 

� Retrieve the constituent parts (i.e., the full resolution profiles) that were 
used to make the nth profile 

� Using the full resolution data, search the altitude region identified as a 
boundary layer feature to identify hot spots (section 4.3) 

� Calculate layer descriptors for each hot spot (section 6); mark hot spots as 
“missing data” 

� Re-average profile package n, omitting all hot spots from the calculation 
(section 4.3) 

� Re-apply the profile scanner to the reformed nth profile (section 3) 

B.5. Calculate layer descriptors for each feature found in the nth profile (section 6) 

B.6. Remove all features found in the nth profile, applying the appropriate 
attenuation correction beneath each (section 4.1) 

C. At the conclusion of Step B SIBYL will have generated N=16 intensity-cleared 
profiles.  Each profile represents an average over the designated fundamental 
averaging distance (5-km).  These N profiles are now partitioned into K groups such 
that the horizontal distance spanned by each group is equal to CALIPSO’s 
intermediate averaging distance of 20 km. (K=4) 

D. for k = 1…K do 

D.1. Average all 5-km profiles in the kth group to produce a single profile having a 
horizontal resolution of 20-km 
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D.2. Use the profile scanner to locate features within the kth averaged profile 
(section 3) 

D.3. Calculate layer descriptors for each feature found in the kth profile (section 6) 

D.4. Remove all features found in the kth profile, applying the appropriate 
attenuation correction beneath each (section 4.1) 

E. At the conclusion of Step D SIBYL will have generated another K=4 intensity-
cleared profiles.  Each of these new profiles represents an average over the designated 
intermediate averaging distance (20-km).  All K of these profiles are now averaged a 
single profile having a horizontal resolution of 80-km. 

F. Use the profile scanner to locate features within this single 80-km averaged profile 
(section 3) 

G. Calculate layer descriptors for each feature found in the 80-km profile (section 6) 

Page 59 of 87 



–  CALIPSO/CALIOP Feature Finding ATBD  – 

n = 1

Average horizontally
over frame n to

produce a single profile

n = 16?

n = n+1

ry layer
features by searching single shot

data used to build profile n

Average 4 intensity-cleared
20-km profiles to produce a

single 80 km profile

Yes

Compute layer descriptors;
mark layer locations as

"missing data" in frame n

Apply Profile Scanning
Engine to find layers in

16-frame (80 km) average

Yes

k = 1

Build profile j by averaging
intensity cleared data

over 4 frames (4k-3 ... 4k)

k = 4?

k = k+1

Apply Profile Scanning
Engine to find layers in

profile k (20 km average)

No

Retrieve 16 Level
II Frames

1 Frame = 5 km
= 15 laser shots

Full resolution
layer descriptors

5-km layer
descriptors

Compute layer descriptors;
mark layer locations as

"missing data" in profile k

20-km layer
descriptors

No

Apply Profile Scanning
Engine to find layers in

profile n (5-km average)

Cloud
cleared?

No

Yes

Compute layer descriptors

80-km layer
descriptors

Average frame data to 1-km;
apply Profile Scanning Engine in

5-km feature regions

1-km layer
descriptors

Reaverage
cloud-cleared

profiles to 5-km

Features
Found?No

Yes

 

Cloud-clear  bounda

Done

Intensity
Clearing

Intensity
Clearing

Figure 4.17: SIBYL Internals 
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4.7. Internal and External Outputs 
For every instantiation of the profile scanner, SIBYL retrieves a comprehensive record of the 
search results returned by the scanning engine.  This record includes information locating the 
profile in time and space and describing (via layer descriptors) all of the features that were found 
(see section 3.4 for details).  After processing each block of input data, SIBYL generates a set of 
profile scanner results obtained from one 80-km averaged profile, four 20-km averaged profiles, 
sixteen 5-km averaged profiles, eighty 1-km averaged profiles, and 240 single-shot profiles.  
Over the course of each individual orbit, a sequential time history of these scanner results is 
stored in a number of HDF (hierarchical data format) files.12  These are intermediate files which 
are used to produce the vertical feature mask and other archived data products described in the 
CALIPSO Data Products Catalog (PC-SCI-503). 

5. Uncertainty Analyses 
Our ability to accurately locate cloud and aerosol boundaries in backscatter lidar data is affected 
by several types of errors: timing and ranging errors, errors resulting from noise in the lidar 
signal, errors due to inaccuracies in the ancillary data, and errors due post-acquisition data 
processing.  Timing errors are inherently very small, and ranging errors are expected to be less 
than the maximum range resolution of 30 m.  This section analyzes the dominant uncertainties in 
the feature-finding process, which primarily arise from noise in the backscatter signal, and 
imperfect correction of the attenuation from overlying features. 

5.1. Minimum detectable backscatter coefficient 
The amount of signal averaging required before retrievals are performed depends on the 
scattering strength of the atmospheric targets and the lidar system performance, as well as 
characteristics of the retrieval algorithm.   Predictions of detection sensitivity based on the theory 
presented in Section 2 are presented below.  These results were derived for a detection 
probability of 90%, with a threshold chosen such that the false alarm probability is 10%.  While 
a 10% false alarm rate is unacceptably high, various aspects of the SIBYL algorithm which are 
not modeled by the theory (e.g., the minimum feature thickness and the false positive rejection 
scheme) will significantly reduce the false alarm rate.   

Predicted minimum detectable target strengths, in terms of 532 nm scattering ratios and 532 nm 
backscatter coefficients, are shown in Table 5.1 for all horizontal averages processed by the 
SIBYL algorithm.  Table 5.1(a) lists the predicted sensitivities at altitude of 1 km for scans done 
at the full vertical resolution of the downlinked data (30 meters).  Table 5.1(b) provides the same 
information for data averaged vertically to a resolution of 60 meters. 

                                                 
12 More information about HDF can be found at the HDF web site maintained by the National Center for 
Supercomputing Applications; see http://hdf.ncsa.uiuc.edu/ 
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Table 5.1(a) : Minimum detectable backscatter coefficient (km-1 sr-1) at 532 nm, 1 km altitude, 
and full vertical resolution (30 meters), for both day and night 

Day Night Laser 
Pulses 

Averaged 

Horizontal 
Resolution 

(km) Rmin βmin Rmin βmin 

1 0.333 14.22 1.91 x 10-2 12.56 1.67 x 10-2 
3 1 7.06 8.75 x 10-3 6.10 7.37 x 10-3 
15 5 3.17 3.14 x 10-3 2.75 2.53 x 10-3 
60 20 1.98 1.41 x 10-3 1.77 1.11 x 10-3 
240 80 1.46 6.68 x 10-4 1.36 5.14 x 10-4 

Table 5.1(b) : as in Table 5.1(a), but for data averaged to a 60 meter vertical resolution. 

Day Night Laser 
Pulses 

Averaged 

Horizontal 
Resolution 

(km) Rmin βmin Rmin βmin 

1 0.333 9.02 1.16 x 10-2 7.84 9.89 x 10-3 
3 1 4.83 5.54 x 10-3 4.16 4.57 x 10-3 
15 5 2.45 2.09 x 10-3 2.15 1.66 x 10-3 
60 20 1.67 9.68 x 10-4 1.52 7.50 x 10-4 
240 80 1.32 4.65 x 10-4 1.25 3.56 x 10-4 

As can be seen from the tables, virtually all clouds in the boundary layer will be detectable at 
single-shot resolution.  However, only unusually high aerosol concentrations will be detectable at 
this resolution.  Horizontal averages of many kilometers will be necessary to detect aerosols.  
Additional averaging in the vertical can be performed to reduce the requirements for horizontal 
averaging. 

Table 5.2 shows the predicted minimum detectable target strengths, in terms of scattering ratio at 
532 nm and in terms of backscatter coefficients, at an altitude of 10 km for a vertical resolution 
of 60 meters for several horizontal averages.  Single shot estimates are not shown, as only 
averaged profiles are downlinked above 8.2 km.  Minimum backscatter coefficients are smaller 
than in Table 5.1, not only due to the on-board averaging that has occurred, but also because the 
Rayleigh noise at 10 km altitude is less than at 1 km altitude.  Table 5.2 indicates that most cirrus 
can be detected, day or night, at the full resolution of the downlinked data (60 meters by 1 km).  
Even thin subvisible tropopause cirrus should be detectable from 30-shot averages.  This analysis 
will be continued to help determine the horizontal and vertical averaging appropriate for 
computing the final cloud output data products. 
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Table 5.2 : Minimum detectable backscatter coefficient (km-1 sr-1) at 532 nm and 10 km altitude, 
day and night 

Day Night Laser 
Pulses 

Averaged 

Horizontal 
Resolution 

(km) Rmin βmin Rmin βmin 

3 1.00 7.66 3.58 x 10-3 6.01 2.69 x 10-3 
15 5.00 3.46 1.32 x 10-3 2.72 9.24 x 10-4 
60 20.00 2.13 6.04 x 10-4 1.75 4.06 x 10-4 
240 80.00 1.54 2.88 x 10-4 1.35 1.89 x 10-4 

 

5.2. Detection efficiency using simulated data 
To verify that the performance of the CALIOP profile scanner meets or exceeds the theoretically 
predicted levels, an extensive simulation study was conducted.  For this study we designed a 
prototype scene, with layer heights chosen to test detection efficiencies both in the PBL region 
(base = 1-km, top = 3-km) and in the mid-troposphere (base = 9-km, top = 11-km). Throughout 
this scene, feature backscatter coefficients were held constant vertically within each full 
resolution profile, but were varied horizontally in a step-wise fashion over a range spanning two 
orders of magnitude (0.0002 km-1 sr-1 to 0.05 km-1 sr-1).  A listing of the spatial and optical 
parameters used in building the prototype scene is provided in Table 5.3.  A single realization of 
this scene is pictured in Figure 5.1(a). 

Table 5.3 : Simulation parameters for the prototype scene shown in Figure 5.1 

Segment Horizontal 
Location 

Vertical 
Location 

Backscatter 
Coefficient 

Optical 
Depth 

1 0-km – 80-km 1-km – 3-km 2.0 x 10-4 km-1 sr-1 0.008 
2 80-km – 160-km 1-km – 3-km 5.0 x 10-4 km-1 sr-1 0.02 
3 160-km – 240-km 1-km – 3-km 1.0 x 10-3 km-1 sr-1 0.04 
4 240-km – 320-km 1-km – 3-km 2.0 x 10-3 km-1 sr-1 0.08 
5 320-km – 400-km 1-km – 3-km 5.0 x 10-3 km-1 sr-1 0.2 
6 400-km – 480-km 1-km – 3-km 1.0 x 10-2 km-1 sr-1 0.4 
7 480-km – 560-km 1-km – 3-km 2.0 x 10-2 km-1 sr-1 0.8 
8 560-km – 640-km 1-km – 3-km 5.0 x 10-2 km-1 sr-1 2 
9 640-km – 720-km 9-km – 11-km 2.0 x 10-4 km-1 sr-1 0.008 
10 720-km – 800-km 9-km – 11-km 5.0 x 10-4 km-1 sr-1 0.02 
11 800-km – 880-km 9-km – 11-km 1.0 x 10-3 km-1 sr-1 0.04 
12 880-km – 960-km 9-km – 11-km 2.0 x 10-3 km-1 sr-1 0.08 
13 960-km – 1040-km 9-km – 11-km 5.0 x 10-3 km-1 sr-1 0.2 
14 1040-km – 1120-km 9-km – 11-km 1.0 x 10-2 km-1 sr-1 0.4 
15 1120-km – 1200-km 9-km – 11-km 2.0 x 10-2 km-1 sr-1 0.8 
16 1200-km – 1280-km 9-km – 11-km 5.0 x 10-2 km-1 sr-1 2 
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To quantify the sensitivity of the profile scanner and the effects of random noise on our detection 
frequency, we generated, analyzed, and compiled statistics for 100 realizations of the prototype 
scene.  The SIBYL profile scanner was used to determine feature boundaries within each of these 
100 instances at five different horizontal averaging intervals: full resolution, 1-km, 5-km, 20-km 
and 80-km.  All profiles were scanned at the full vertical resolution of the downlinked data; no 
additional vertical averaging or smoothing was performed for any of the tests.  The nested multi-
grid search capabilities provided by the SIBYL algorithm (see section 4) were not used for these 
trials.  However, the false positive rejection scheme described in section 4.5 was employed, and, 
as will be explained presently, had a noticeable effect on some of the results. 

532 nm Attenuated Backscatter Coefficients Single Shot (240 profiles per segment) 

ba

e

Fig
coe
obt
pro
km
1-km (3 shots averaged, 80 profiles per segment) 5-km (15 shots averaged, 16 profiles per segment) 

20-km (60 shots averaged, 4 profiles per segment) 80-km (240 shots averaged, 1 profiles per segment) 

 

c 

 

ure 5.1 : Examples of (a) simulated nighttime measurements of attenuated backscatt
fficients at 532 nm; (b) results obtained searching full resolution profiles; (c) resu
ained searching profiles averaged to 1-km horizontally; (d) results obtained searchi
files averaged to 5-km horizontally; (e) results obtained searching profiles averaged to 2
 horizontally; (f) results obtained searching profiles averaged to 80-km horizontally. 

Page 64 of 87 
d

l
n

0

f

er 
ts 
g 
-



–  CALIPSO/CALIOP Feature Finding ATBD  – 

Typical results obtained in the analysis of a single nighttime realization are shown in Figure 5.1.  
Panels (b) through (f) show, respectively, the locations of features found at the full resolution of 
the downlinked data, and at horizontal averaging intervals of 1-km, 5-km, 20-km, and 80-km.  
Due to the configuration of the on-board averaging scheme, only the data below 8.2-km is 
downlinked at the full 1/3-km horizontal resolution of the lidar.  Between 8.2-km and 20.2-km 
the data is averaged on-board the satellite to a nominal horizontal resolution of 1-km.  Therefore, 
in panel (b) the features in segments 9 through 16 are retrieved using a 1-km horizontal 
averaging interval. 

As shown in Table 5.1, the minimum detectable aerosol backscatter coefficient for boundary 
layer features at the 1/3-km averaging interval is 1.67 x 10-2 km-1 sr-1.  Thus in Figure 5.1(b), 
which shows the detection results for the search at 1/3-km, we would expect to see a 90% or 
better success rate in segments 7 and 8, where the particulate backscatter coefficients are 2.0 x 
10-2 km-1 sr-1 and 5.0 x 10-2 km-1 sr-1, respectively.  Similarly, for the 1-km search shown in 
Figure 5.1(c), where the minimum detectable backscatter coefficient is 7.37 x 10-3 km-1 sr-1, we 
would expect to see a 90% or better success rate in segments 6 through 8.  We should also see 
this same 90% or better success rate in segments 5 through 8 for the 5-km search (see Figure 
5.1(d)).  For the 20-km horizontal averages (Figure 5.1(e)), a 90% or better success rate should 
occur in segments 4 through 8.  At this resolution, the success rate should also approach 90% in 
segment 3, for which the particulate backscatter coefficient is 1.0 x 10-3 km-1 sr-1 and the 
minimum detectable backscatter coefficient (at the 90% level) is 1.11 x 10-3 km-1 sr-1.  Likewise, 
at the 80-km averaging interval (Figure 5.1(f)), the success rate should be close to 90% in 
segment 2, and should equal or exceed 90% in segments 3 through 8.  In the example shown 
here, the theoretical expectations are met by the practical implementation in every instance.   

Composite statistics computed over the full set of 100 realizations for the aerosol segments (i.e., 
1–8) of the prototype scene are provided in Figure 5.2 (see the ‘Detection Frequency’ numbers in 
each panel).  These results confirm the findings illustrated by Figure 5.1 and described in the 
preceding paragraph.  In fact, the SIBYL profile scanner performs considerably better than the 
theoretical predictions for all horizontal averages.  For example, at the 80-km averaging interval, 
the SIBYL algorithm achieves a 99% success rate when measuring an aerosol layer having a 
backscatter coefficient of 2.0 x 10-4 km-1 sr-1.  Theory predicts a lower success rate (90%) for a 
higher backscatter coefficient (5.14 x 10-4 km-1 sr-1), and thus in this instance the sensitivity of 
the actual profile scanner exceeds the theoretical expectation by a factor of 2.5.  This marked 
difference between theory and practice can be attributed to the fact the SIBYL can employ much 
lower threshold values than are specified in the theoretical studies.  The false positives that 
would otherwise occur are eliminated by the enforcement of SIBYL’s minimum feature 
thickness requirement; i.e., some number of consecutive data points must exceed the threshold 
before a feature is positively identified. 

More insight into the performance levels that will be achieved by SIBYL can be obtained by 
comparing the test results to the predicted success rates for the 60-meter vertical averages given 
in Table 5.1.  With one illuminating exception, the feature finder results achieved when scanning 
at a 30-meter vertical resolution – i.e., with no vertical averaging – exceed those predicted for the 
averaged profiles.  The exception occurs in segment 3 during the 5-km search.  While the layer 
backscatter coefficient in this region is just slightly below the 90% expected detection threshold 
(1.0 x 10-3 km-1 sr-1 vs. 1.101 x 10-3 km-1 sr-1), the actual rate of detection is substantially lower 
(42%).  This apparent sub-optimal performance is due to the “protective actions” enforced by 
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SIBYL’s false positive rejection scheme.  For series of tests reported here, the false positive 
threshold for the 5-km search was set at  = 0.0015 sr-1. The integrated attenuated 
backscatter for the feature in segment 3 is 0.002 sr-1.  Realizing that noise in the signal can 
prevent the profile scanner from identifying the full extent of a feature, and that, again due to the 
influence of noise, the integrated attenuated backscatter measurements will actually be randomly 
distributed about a mean of 0.002 sr-1, a detection frequency of 42% appears to be quite 
reasonable given the relatively high value (with respect to the target) of the rejection threshold.  
When the test was repeated with the false positive rejection threshold halved, to a value of 
0.0075, the 5-km detection frequency in segment 3 rose to 88%. 

thresholdγ′

In the discussions above, a successful trial is said to occur whenever any fraction of a feature is 
correctly detected.  However, because features have vertical extent, simple hit rate calculations 
are not sufficient for characterizing the efficacy of the detection scheme.  A second critical issue 
must also be addressed: on those occasions when we detect a feature, we need to ascertain the 
vertical extent of the feature detected.  The bar graphs shown in Figure 5.2 provide this 
information.  For averaging intervals of 5-km and greater, if the detection frequency exceeds 
90% the profile scanner will correctly identify the entire extent of the layer for all but the very 
weakest of features (see segment 1 for an averaging interval of 80-km).  Paradoxically, when 
using averaging intervals of 1/3-km or 1-km, the layer fraction detected actually decreases for 
the most intense features.  This situation, illustrated by the diagram in Figure 5.3, is caused by 
strong attenuation within the feature.  When only a minimum of horizontal averaging is done, the 
SNR at the base of these features can become quite low, and hence the base estimation and 
refinement strategies described in sections 3.2.7 and 3.2.8 can terminate prematurely. 

Table 5.4 lists detection frequencies and the mean feature size for the detected features for all 
segments and all averaging intervals.  Examining the results shows that, for the lower backscatter 
coefficients, features at the higher altitude are detected more frequently than those at the lower 
altitude (e.g., compare the 5-km results in segment 3 to those in segment 11).  This disparity in 
detection efficiency is due to the increased contrast with respect to the molecular atmosphere that 
a fixed backscatter coefficient will exhibit with increasing altitude. A backscatter coefficient of 
2.0 x 10-3 km-1 sr-1 will generate an attenuated scattering ratio of ~2.8 at an altitude of 3-km, 
whereas at 11-km the attenuated scattering ratio produced by same backscatter coefficient will 
rise ~5.7. 
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Figure 5.2 : Aerosol layer detection for the minimum detectable backscatter simulations; test 
segment numbers are listed along the bottom of each panel; the bar graphs plot the mean 
feature thickness for all features detected within each segment; detection frequency within 
each segment is listed above each bar. 
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Table 5.4: Detection results for all segments.  The detection frequency number describes how 
often any fraction of a feature was detected within the target area (target areas for each 
segment are listed in Table 5.3); the mean thickness value describes the average vertical extent 
of all features detected within a segment. 

 Detection Frequency / Mean Thickness 
Segment Single Shot 1-km 5-km 20-km 80-km 

1 0.001 / 0.514 0.000 / 0.000 0.000 / 0.000 0.078 / 1.355 0.990 / 1.854 
2 0.003 / 0.523 0.000 / 0.000 0.001 / 1.740 0.973 / 1.950 1.000 / 2.032 
3 0.021 / 0.593 0.004 / 0.930 0.420 / 1.959 1.000 / 2.030 1.000 / 2.037 
4 0.195 / 0.718 0.245 / 1.178 0.998 / 2.024 1.000 / 2.038 1.000 / 2.040 
5 0.956 / 1.433 0.999 / 1.950 1.000 / 2.039 1.000 / 2.040 1.000 / 2.040 
6 1.000 / 1.903 1.000 / 2.023 1.000 / 2.040 1.000 / 2.040 1.000 / 2.040 
7 1.000 / 1.914 1.000 / 2.022 1.000 / 2.040 1.000 / 2.040 1.000 / 2.040 
8 1.000 / 1.466 1.000 / 1.845 1.000 / 2.038 1.000 / 2.038 1.000 / 2.040 
9 NA 0.000 / 0.000 0.000 / 0.000 0.330 / 1.943 1.000 / 2.081 
10 0.003 / 1.622 0.003 / 1.622 0.010 / 2.081 1.000 / 2.100 1.000 / 2.119 
11 0.223 / 1.711 0.223 / 1.711 0.844 / 2.087 1.000 / 2.116 1.000 / 2.116 
12 0.948 / 1.984 0.948 / 1.984 1.000 / 2.109 1.000 / 2.121 1.000 / 2.120 
13 1.000 / 2.104 1.000 / 2.104 1.000 / 2.114 1.000 / 2.119 1.000 / 2.118 
14 1.000 / 2.113 1.000 / 2.113 1.000 / 2.114 1.000 / 2.117 1.000 / 2.119 
15 1.000 / 2.113 1.000 / 2.113 1.000 / 2.115 1.000 / 2.122 1.000 / 2.125 
16 1.000 / 2.091 1.000 / 2.091 1.000 / 2.114 1.000 / 2.120 1.000 / 2.119 

 

5.3. Stability of the SIBYL Algorithm 
The tests reported in section 0 verify the performance of the SIBYL profile scanning algorithm 
with respect to theoretically predicted minimum detectable backscatter coefficients.  To assess 
the stability and end-to-end performance of the complete SIBYL algorithm, a second, more 
comprehensive set of tests was conducted.  For this additional test sequence we used simulations 
derived from multi-layer LITE measurements of aerosols and broken cirrus clouds acquired over 
western Kazakhstan during orbit 79.  The LITE source data is shown in panel (a) of Figure 5.4.  
The spatial and optical properties of the features in this scene were extracted and used as input to 
the CALIPSO lidar simulation software (Powell et al., 2002). Panel (b) of Figure 5.4 shows the 
“truth template” derived from the data in panel (a), with the green regions indicating the presence 
of features (either cirrus cloud or aerosol).  Within this truth template, the aerosol layer extends 
uniformly from the surface (0-km) to 2.5-km, with an optical depth of 0.09 and a lidar ratio of 40 
sr at 532 nm.  The cirrus clouds are spatially intermittent, with a mean lidar ratio of 
approximately 20 sr, and an optical depth that varies from a low of ~0.01 (subvisible) to a 
maximum of 0.67. 

The stability test was constructed in a manner similar to the earlier detection efficiency test.  100 
realizations of the test scene were generated for both nighttime and daytime lighting conditions.  
Examples scenes can be seen in Figure 5.4(c) and Figure 5.4(d).  Each scene was then analyzed 
using the SIBYL algorithm, configured as described in Table 5.5.  By comparing the detection 
results to the truth template, three metrics were tabulated for each trial: the success rate, the false 
positive rate (which is equal to the total area of all false positives divided by the total “clear air” 
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area), and the missed feature or false negative rate (equal to the total area of all missed features 
divided by the total true feature area). 

Table 5.5: Configuration of the SIBYL algorithm for the feature finder stability test; the numbers 
reported here are the default values for the production version of SIBYL.  

Parameter Night Value Day Value 
Search Start Altitude 30.0 km 30.0 km 
Search Stop Altitude -1.5 km -1.5 km 
MBV 1.50 1.75 
RBV 1.50 1.50 
Spike Threshold Factor 10.0 50.0 
S reasonable 40.00 30.00 
False Positive Threshold (γ′) 0.00150 0.00150 
Minimum Feature Thickness  
 Lower stratosphere (30.1 km to 20.2 km) 540 540 
 Upper troposphere (20.2 km to 8.3 km) 240 240 
 Lower troposphere (8.3 km to –0.5 km) 180 180 
Spike Thickness  
 Lower stratosphere (30.1 km to 20.2 km) 360 360 
 Upper troposphere (20.2 km to 8.3 km) 120 120 
 Lower troposphere (8.3 km to –0.5 km) 90 90 

 

 

( )) 

(c) (

Figure 5.4 : Nighttime (panel (c)) and daytime (panel (d)) CALIOP simulations derived fro
LITE measurements shown in panel (a).  The green regions in panel (b) specify the locatio
all cloud and aerosol layers within the test scene. 
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Figure 5.5 shows typical feature finder results for an arbitrarily selected nighttime (panel (a)) and 
daytime (panel (b)) instantiations of the test data.  In these plots, the green color represents those 
areas where SIBYL correctly identified a feature.  The white portions of the plots also indicate a 
successful outcome, as they represent areas of clear air, where SIBYL rightly did not identify a 
feature.  False positives are shown in black.  In the scene selected for this test, the intermittent 
nature of the clouds, combined with SIBYL’s variable averaging scheme, leads to many more 
false positives being found in and around the cirrus deck as compared to within the homo-
geneous aerosol layer.  Those areas where SIBYL failed to detect a feature are shown in red.  
While the aerosol detection rates are quite good during the nighttime example, due to the greatly 
increased levels of background  noise, they deteriorate noticeably in the daytime example.  For 
the nighttime scene, the false negative rate is 6.8% and the false positive rate is 0.9%.  The 
corresponding numbers for the daytime scene are 47.7% and 0.8%, respectively. 
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scatter coefficient is 5.0 x 10-4 km-1 sr-1.)  The mean nighttime false positive rate is 1.02% ± 
0.14%.  Taken together, these numbers show that SIBYL’s performance during nighttime 
operations is accurate, stable, and reliable. 

Panel (b) of Figure 5.6 shows the daytime results.  As expected, the false negative rate for 
daytime detections is substantially higher than at night.  However, the scene-to-scene variability, 
derived by dividing the standard deviation of the false negative rate by its mean, is almost 
identical for both the daytime and nighttime cases: 0.206 during the day versus 0.214 during the 
night.  The false positive rate during daytime is 1.01% ± 0.22%; i.e., essentially identical to the 
nighttime value.  Therefore we can conclude that while the accuracy of the detection scheme 
during daytime operations is degraded with respect to nighttime performance (due to poorer SNR 
caused by high levels of solar background radiation during daylight), the stability and reliability 
of the algorithm remain constant irrespective of lighting conditions. 

5.4. Performance Examples 
In this section we present one final example demonstrating of the performance of SIBYL.  The 
simulated CALIOP data shown in Figure 5.7 was derived from measurements acquired during 
LITE orbits 54 and 129.  This scene was deliberately designed as a stress test for the feature 
finder scheme.  Feature placement (e.g., highly attenuating cirrus overlying optically thin 
aerosols), composition (e.g., fair weather cumulus embedded in aerosol), and horizontal scales 
were chosen so as to exercise all aspects of the SIBYL algorithm.  The upper panel shows a time 
history of the data plotted at a 1-km horizontal resolution and full resolution vertically.  The 
middle panel shows the feature boundaries reported by SIBYL.  The lower panel provides the 
locations for missed features all and false positives.  Overall, we judge SIBYL’s performance on 
this scene to be excellent.  The false negative rate is 12.2%, and the false positive rate is 1.9%.  
The false negatives occur predominately in regions where overlying features have significantly 
attenuated the backscatter signal; for example, see the region between 0-km and 200-km 
horizontally and 0-km  6-km vertically, where the combination of highly attenuating cirrus 
overlying a deep but weakly scattering aerosol layer results in a relatively large “missed 
features” area.  The majority of the false positives are seen to be associated with faint and/or 
broken features whose boundaries intrude upon, but only partially fill, any given horizontal 
averaging region.  Examples of this behavior occur in the very faint cirrus at ~12-km vertically 
and ~300-km horizontally, and in the broken cirrus clouds that occur at ~9-km vertically and 
520-km horizontally. 
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Figure 5.7: Images of simulated CALIOP data before (upper panel) and after (middle panel)  
being analyzed by SIBYL.  The data in this scene was synthesized from retrievals performed on 
LITE measurements acquired during orbits 54 (clouds) and 129 (aerosols).  In the middle panel, 
features detected at single shot resolution are rendered in pale gray; features detected at a 
1-km horizontal resolution are rendered in red; 5-km features are shown in cyan; 20-km 
features are shown in yellow; and features detected at 80-km are shown in dark green.  The 
lower panel presents an analysis of the feature finder results.  The green regions indicate 
successful detection, black regions represent false positives, and red regions show missed 
features. 
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6. Computing Layer Descriptors 
In this section we provide concise formulas for all of the layer descriptors that are computed by 
the feature finder algorithms and reported in the archived data products.  Where appropriate, 
more detailed development is given elsewhere in this document.  Note too that several of the 
“layer descriptors” are not scalar quantities, but instead contain an array of descriptive statistics 
calculated from the range-resolved backscatter data.  We have defined a standard suite of 
statistics that consists of the minimum and maximum values within the feature, the sample mean 
value and standard deviation computed between feature top and feature base, and a 
dimensionless “skewness” parameter (Brandt, 1999).  The general expressions used for 
computing estimates of the mean, standard deviation, centroid, and skewness are given below. 
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The summations indicated in equations (6.1) through (6.4) are taken over all data points in 
between and including feature top and feature base. 

6.1. Layer base and top heights  
Layer base and top heights are the most basic of all layer descriptors.  Base and top heights are 
determined SIBYL’s modification of the profile scanner (see Figure 4.16). 

6.2. Renormalization region 
The renormalization region is specified by the base and top altitudes of the region of “clear air” 
beneath a transmissive feature.  For all transmissive layers SIBYL uses a search routine to 
determine a renormalization region.  The two-way transmittance of the layer is computed in this 
region. 

6.3. Horizontal averaging resolution 
The amount of horizontal averaging that was required to detect the base and top altitudes of a 
given layer. 
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6.4. Attenuated backscatter statistics at 532 nm and 1064 nm 
We characterize the feature backscatter intensity with our suite of descriptive statistics (equations 
(6.1) through (6.4)) from the corrected total attenuated backscatter coefficients at both 532 nm 
and 1064 nm.  As shown in equation (6.5), the correction applied compensates for attenuation of 
the signal due to molecules and ozone.  The magnitude of these effects at each range bin is 
computed from meteorological models. 
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6.5. Integrated attenuated backscatter at 532 nm and 1064 nm 
The calculations necessary to derive layer integrated attenuated backscatter from the 532 nm 
attenuated scattering ratios are covered in detail in Section 3.2.9.1.  The procedure outlined there 
is equally applicable to the 1064 nm data.  Alternately, the following calculations can be used to 
derive layer integrated attenuated backscatter from the (total) attenuated backscatter coefficients. 
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The uncertainty in ,′ featureλγ  is derived using standard statistical techniques (e.g., as in Bevington 
and Robinson (1992)), and is most readily developed using the alternate formulation given in 
equation (6.6): 
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Here  represents the uncertainty in the B  value measured in the kth range bin, where ,∆B kλ λ
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6.6. Total (volume) depolarization statistics 
Extinction coefficients and the associated two-way transmittances are not polarization-sensitive.  
Thus to obtain the total or volume depolarization ratio profile within a feature we simply divide 
the perpendicular channel attenuated backscatter coefficients by the corresponding parallel 
channel attenuated backscatter coefficients: 
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Having computed the volume depolarization ratio profile, we can then compute the suite of 
descriptive statistics described above. 

6.7. Layer-integrated volume depolarization 
Because the depolarization ratio is the quotient of two noisy measurements, the computed 
quantity has a greater uncertainty than does either of the constituent parts.  As a consequence, a 
quantity of perhaps greater utility in the scene classification algorithms is the feature integrated 
depolarization ratio, defined as follows: 
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The relative error in  is derived using standard error propagation formulas (Bevington and 
Robinson, 1992): 
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6.8. Attenuated total color ratio statistics 
To obtain the attenuated total color ratio profile within a feature we divide the 1064 nm 
corrected attenuated backscatter coefficients by the corresponding 532 nm corrected attenuated 
(total) backscatter coefficients: 
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Our standard suite of descriptive color ratio statistics is then computed using profiles of . ( )′ zχ

6.9. Integrated attenuated total color ratio 
The feature integrated attenuated total color ratio is analogous to the feature integrated 
depolarization ratio, and is computed as follows: 
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Continuing the analogy to , the relative error in layerδ ′featureχ  is also derived using the same 
standard error propagation formulas: 
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6.10. Layer Two-way Transmittance and Error Estimate at 532 nm 
The two-way transmittance of transmissive layers is computed by calculating the mean 
attenuated scattering ratio over the renormalization region. 
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The error estimate is simply the standard deviation of the attenuated scattering ratio computed 
over the same region. 

7. Practical Considerations 

7.1. Application 
Application of the SIBYL algorithm requires a contiguous segment of valid Level 1 attenuated 
backscatter profiles, together with the corresponding ancillary data, extending over a horizontal 
distance equal to the largest averaging interval specified in the main loop (i.e., with reference to 
Figure 4.1, the Nth interval).  For the CALIPSO implementation of SIBYL, this interval is 80-
km.  80-km segments containing invalid profile data or invalid ancillary information (e.g., 
baseline RMS values) will not be analyzed during the automated production processing. 

7.2. Trouble Spots 
SIBYL’s spatial analysis is expected to be somewhat problematical in the following regions 
and/or seasons: 

• polar troposphere – a review of the Geoscience Laser Altimeter System (GLAS; Spinhirne, 
2002) data shows that this region frequently exhibits an extremely complex distribution of 
features; at present we have very little experience analyzing down-looking, multi-wavelength 
lidar measurements obtained in the polar troposphere; the closest available proxy is the LITE 
data from above 50º N and below 50º S 

• polar stratosphere – given the current maximum horizontal averaging distance of 80-km, PSC 
identification will be confined to the more robust clouds; boundary location for faint PSCs 
will require additional off-line processing 

• midlatitude & equatorial stratosphere – these regions will be relatively tractable if conditions 
remain quiescent; however, a major volcanic eruption could cause difficulties 
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7.3. Identifying Surface Returns 
Ultimately, the task of classifying atmospheric features as either clouds or aerosols is allocated to 
the scene classification algorithms.  However, separating surface returns from atmospheric 
features is handled by the feature-finder algorithms.  This section describes the algorithm used to 
do so. 

Practical implementations of algorithms for identifying surface returns must be able to 
accommodate several situations.  As illustrated in Figure 7.1, the surface spike in a profile can be 
obscured entirely by overlying layers, as in panel B.  Much of the time, as in panels A and C, the 
surface spike has a magnitude much greater than the adjacent atmospheric return, allowing 
reliable detection.  However, as illustrated in panel C, application of the standard threshold 
technique alone is frequently inadequate: both clouds and aerosols can be located immediately 
above or directly in contact with the Earth’s surface.  In these cases, surface detection requires an 
examination of the (potentially composite) as yet unclassified feature to determine if the whole 
or any part of it resembles a surface spike. 
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The flowchart shown in Figure 7.2 presents full details of the surface recognition algorithm.  A 
sequence of tests is applied to lowest feature within a profile (i.e., F[min]) to determine which of 
the three categories of surface returns it best represents: surface return not found (e.g., Figure 
7.1b), a “pure” surface return (e.g., Figure 7.1a), or a surface return in contact with a separate 
atmospheric feature (e.g., Figure 7.1c).  If the lowest feature is classified as a composite – that is, 
as having atmospheric and surface components, as in category 3 – then the two components are 
separated and reported individually.  As is standard with the CALIPSO algorithm architecture, 
the behavior of the surface detection algorithm is controlled by a set of programmable 
parameters that are supplied to the algorithm at runtime via external configuration files.   

Select lowest
feature F[min]

is base
"close to" DEM

surface?
NO

is feature
thickness within
expected surface

spike range?

YES

Surface DETECTED
Set SurfaceStatus = Pure SurfaceYES

from feature base, select a range of
points Rsfc equal to the expected

surface spike thickness

NO Assumuption:  if present, the
surface spike will be within the
bottom "expected surface spike
thickness" kilometers of the feature

Locate maximum value within Rsfc
Remove this value, and compute the

standard deviation of the remaining data

max > 3σ? NO

From max value move up
in altitude to the 1st point
Z[n] where the data values
are no longer decreasing

YES

Insert new feature F[sfc]
Set F[sfc].base = F[min].base

Set F[sfc].top = Z[n]
Set F[min].base = Z[n-1]

Check: is
F[min] still a
legitimate
feature?

Surface DETECTED
Set SurfaceStatus = Surface

Attached to FeatureBase
YES

Remove F[min] Surface DETECTED
Set SurfaceStatus = Pure Surface

NO

YES

this threshold should be adjustable
via a configuration file; 3σ may not
be the best value to use...

 

Surface NOT Detected
Set SurfaceStatus = Not Found

Surface NOT Detected
Set SurfaceStatus = Not Found

Figure 7.2: Surface spike identification procedure 
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7.4. Assessing Feature Opacity 
Because the lidar signal can be completely attenuated by optically thick clouds, it is necessary to 
evaluate each base height to determine whether it indicates the true base or merely the point at 
which the lidar signal becomes completely attenuated.  However, within the context of 
automated detection of features in backscatter lidar returns, the assessment of a cloud (or an 
aerosol layer) as being “opaque” is not necessarily straightforward.  An object which appears 
opaque at one spatial resolution may be reclassified as transmissive upon further averaging.  
Opaque clouds filling only part of an averaging interval represent another complication. 

Consider a sequence of unclassified features detected within a single lidar profile (e.g., as in 
Figure 1.1, Figure 3.2, Figure 3.13, and/or Figure 7.1).  Clearly the lowest of the features within 
each profile are opaque, as no backscattered signal can be measured beneath them.  Now 
consider Figure 7.3, which shows a profile acquired during LITE orbit 54.  When analyzing this 
profile with the LITE profile scanner, two features are detected: an upper layer between 11.86-
km and 13.26-km, and a lower layer between 7.48-km and 9.51-km.  As no features are detected 
below 7.48-km, the lower layer appears to be opaque.  However, in the context of the nested 
multi-grid averaging scheme used by SIBYL, it is possible that the surface (which, according to 
the DEM used by LITE, is at 0.3-km) could be detected during a subsequent search at 5-km, 20-
km, or 80-km.  That this is a realistic possibility – and, for this particular measurement, quite 
likely – can be seen by examining the upper panel of Figure 7.5, which presents a color 
modulated time history of the orbit 54 data from which Figure 7.3 was extracted.  Features that 
initially appear opaque when profiles are searched at maximum spatial resolution can later be 
reclassified as transmissive upon subsequent analysis of the underlying data. 

 

Figure 7.3: LITE profile from orbit 54 at 7.349° S, 52.846° W 

To resolve the spatial resolution conundrum, the CALIPSO opacity flag is evaluated only for 
those features detected at horizontal averaging resolutions of 5-km or greater.  For any 80-km 
segment of data, SIBYL will produce a uniform collection of profile descriptors: one set at 80-
km, 4 sets at 20-km, and 16 sets at 5-km.13  Data from the layer descriptors and profile 
                                                 
13 We note that layer descriptors are also generated at 1-km and 1/3-km resolutions.  However, these 
data are not germane to the current discussion, as the feature search for those resolutions is restricted to 
regions where features were previously identified at the 5-km resolution. 
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descriptors is combined to produce a time history of the “maximum penetration depth” (MPD).  
The MPD for any 5-km segment describes the lowest feature boundary detected within that 
segment during any of SIBYL’s scans through the region; that is, from the fundamental 
averaging distance of 5-km out to the maximum averaging distance of 80-km.  The definition of 
opacity is thus straightforward for features found at 5-km: if the MPD for that 5-km region is 
lower than the feature in question then that feature is transparent.  At 20-km and 80-km, features 
are defined as transparent if 50% or more of the MPD values within the region are less than the 
feature base height (i.e., a lower feature was detected at least half of the time).  The flowchart 
presented in Figure 7.4 gives additional details about the mechanics of the CALIPSO opacity 
algorithm.  Figure 7.5 presents a conceptual diagram showing the application of the opacity 
algorithm to a segment of LITE data acquired during the nighttime portion of orbit 54. 

Get Layer
Descriptor Set

Select a complete set of SIBYL layer descriptors.  For the currently
defined averaging levels, a complete set includes all single shot, 1-km,
5-km, 20-km, and 80-km layer descriptors associated with a single 80-
km horizontally averaged segment of data

Construct Maximum
Penetration Profile

A "maximum penetration profile" is simply an array that describes the height of the
lowest feature found at SIBYL's fundamental resolution (i.e., 5-km).   For example,
the max penetration profile (MPP) for the 5-20-80 averaging scheme will have 16
elements.  The procedure for building this array is as follows:

[1] fill all elements in the MPP with the base and top altitudes of the lowest
feature found in the 80-km scan

[2] selecting sequential sets of 4 MPP elements at a time, if the TOP of the
lowest feature in the corresponding 20-km averaging lies beneath the
current MPP top within the set, replace all set elements with the 20-km
feature data

[3] repeat step [2] working with individual MPP elements and the 5-km feature
data

Assign 5-km Layer
Opacities

For each 5-km set of layer descriptors, all layers found above the
corresponding MPP element are transmissive.

Assign 20-km Layer
Opacities

Assign 80-km Layer
Opacities

Features averaged over more than SIBYL's fundamental
averaging distance are defined as transmissive  if 50% or more
of the corresponding MPP elements (i.e., those that span the
same horizontal distance) lie beneath the feature's base.

 

Figure 7.4: Layer opacity procedure 
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Figure 7.5: Conceptual diagram of the CALIPSO opacity algorithm applied to LITE data acquired 
during orbit 54.  The upper panel shows the scene prior to application of the algorithm.  In the 
lower panel, the black line demarcates the top of the “opaque layer”.  The vertical lines in the 
lower panel are drawn at 20-km intervals. 

7.5. Proposal for Validation (preliminary suggestions) 
Initial activities validation activities for the feature location algorithms will include: 

• underflights of the orbit track using both up-looking and down-looking lidars  

• statistical comparison of cloud heights with those obtained from ground stations  (the 
CALIPSO data must be co-located and co-temporal to within 10-km) 

• comparison of feature horizontal extent with satellite images (e.g., MODIS) 

Additional detail can be found in the CALIPSO Science Validation Plan (PC-SCI-501). 

7.6. Quality Control and Diagnostics 
The general approach to quality control and diagnostic issues adopted within SIBYL is to 
examine the received backscatter signals and the subsequent feature-finder outputs to see 
whether they behave in a manner that is consistent with what one would expect from valid 
measurements.  Any of the following conditions can indicate the possibility of an error: 
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• No features of any kind are found within a complete profile.  At minimum, either a 
surface return or a single atmospheric feature should be detected for every laser pulse. 

• The integrated attenuated backscatter summed over all features within a column/profile 
lies above the maximum possible value.  In opaque layers, ′γ  asymptotes to a value of 
1 2 Sη , which typically is less than 0.5.  (S and η vary, depending on the characteristics 
of the layer and the lidar sensing geometry.)  Values greater than the maximum 
asymptotic value indicate an error condition.  The estimate of the maximum value will be 
revised after launch based on on-orbit data. 

• Within any 80-km data segment passed to SIBYL, the mean molecular signal between 
30-km and the top of the first feature must have (a) a mean attenuated scattering ratio 
close to 1 and (b) a positive correlation coefficient with respect to the molecular 
attenuated backscatter model.  (Due to the high background levels present during 
daytime, this test might only be useful for nighttime data.) 

• Within all features having a mean attenuated scattering ratio or 5 or greater, the 532 and 
1064 signals should have a positive correlation coefficient. 

The sections below discuss several techniques for implementing these quality checks. 

7.6.1. Checking Feature-Finder Inputs 

To retrieve accurate estimates of feature boundaries, the profile scanning algorithm depends on 
the fidelity of the meteorological data and on the accuracy of the calibration constants retrieved 
in the Level 1 analyses.  The 532 nm calibration procedure guarantees that the mean attenuated 
scattering ratio computed over the calibration region (nominally 30-km to 34-km) will be equal 
to 1.0.  The tests performed in this section will assess the linearity of the calibration with respect 
to altitude by analyzing clear air regions beneath the calibration regions.  Two altitude regions 
will be tested, as follows: 

(a) For all 80-km segments of nighttime data for which the highest feature top is less than 
18-km, compute 

• the mean and standard deviation of the 532 nm attenuated scattering ratios; and 

• the correlation coefficient for the measured attenuated backscatter at 532 nm with 
respect to the 532 nm clear air model delivered by the CALIPSO Met Manager. 

All quantities should be calculated between 18-km and 22-km vertically, and at a horizontal 
resolution of 80-km.   

(b) For all 80-km segments of nighttime data with a maximum feature top less than 6-km, 
compute the statistics specified above (mean and standard deviation of ( )532′R z , and the 
correlation coefficient with respect to the “clear air” model) between 6-km and 9-km 
vertically at a horizontal resolution of 80-km for both the 532 nm data and the 1064 nm 
data. 

Totals for all values calculated above are accumulated for each nighttime granule.  These 
numbers are then used to generate the following quality assurance plots: 
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• histograms showing the distribution of mean attenuated scattering ratios computed in 
each altitude regime (i.e., 6-km to 9-km and 18-km to 22-km); and 

• time series plots of mean attenuated scattering ratios and correlation coefficients for each 
altitude regime; error bars derived from the corresponding standard deviation calculation 
should be included for the mean attenuated scattering ratio plots. 

Tables of summary statistics should also be produced for each granule.  These tables should 
include the median, mean, and standard deviation of each set of histogram data, and the slope 
(with respect to time) of the mean attenuated scattering ratios and correlation coefficients.  
Assuming the SIBYL algorithm is performing effectively, the median values of the 532′R  
histogram should both be close to 1.0.  Significant variation from 1.0 can mean either that the 
molecular and/or ozone number density profiles are in error, or that the feature finding algorithm 
is failing to identify high-altitude features. 

7.6.2. Checking Feature-Finder Performance 

To monitor the performance of SIBYL, we rely on statistical assessments of the features found 
within each orbit.  For each 5-km column, we  

(a) determine the number of cloud layers, the number of aerosol layers, and the total number 
of atmospheric features (i.e., the number of clouds plus the number of aerosols); and 

(b) compute the sum of the feature geometric thicknesses found within the column for all 
features and again separately for both clouds and aerosols. 

Table 7.1: Number of cloud layers per 7.4-km column derived from LITE measurements 

Layers Number Percent 
0 22972 18.47 
1 58528 47.05 
2 28851 23.19 
3 10288 8.27 
4 2855 2.30 
5 699 0.56 
6 147 0.12 
7 38 0.03 
8 8 0.01 
9 1 0.00 

The accumulated totals over any given time period should remain relatively stable and should 
closely resemble real-world distributions acquired by other instruments (e.g., LITE and GLAS).  
Using statistics derived from LITE measurements we can develop an initial expectation 
regarding the distributions of the number of features found within each profile (see Table 7.1) 
and the total geometric thickness of those features (see Figure 7.6).  Similar statistics can also be 
derived from the GLAS data. 
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Figure 7.6: Total cloud geometric thickness per 7.4-km column derived from LITE 
measurements 

7.7. Browse Products 
The Level 1 lidar browse products consist of color-modulated time histories of attenuated 
backscatter coefficients for the three measurement channels: 532 nm parallel, 532 nm perpen-
dicular, and 1064 nm total.  For Level 2, these browse products are augmented by images of the 
vertical feature mask (VFM) data product, generated on time scales identical to those used in the 
Level 1 images.  The VFM, which combines the information derived by SIBYL and the scene 
classification algorithms, contains one 16-bit integer for each lidar altitude resolution element in 
the downlinked (i.e., Level 0) data stream.  Each of these integers is interpreted as bit-mapped set 
of scene classification flags.  VFM images thus provide comprehensive pictures of the SIBYL 
results and the subsequent feature classifications at the highest possible spatial resolution.  The 
descriptive information contained within these scene classification flags consists of Boolean-type 
classifications (e.g., a yes-no answer to a specific query) and simple categorizations (e.g., cloud, 
aerosol, “clear air”) and/or assessments (e.g., poor, fair, good, excellent).  Images representative 
of both the Level 1 browse products and the Level 2 VFM products are displayed in Figure 7.7.  
The VFM image shows the boundaries for all atmospheric features, color-coded according to 
feature type.  Regions that do not contain features are also classified as being clear air, surface 
returns, subsurface data, or totally attenuated data. 

Figure 7.7: (a) Level 1 browse images; (b) Level 2 vertical feature mask image showing feature 
boundaries and feature type 
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Additional information describing the content and format of the VFM can be found in Part 6 of 
the CALIOP ATBD (see PC-SCI-202, Part 5). 
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